Data processing: generic control systems or specific application – Specific application – apparatus or process – Specific application of positional responsive control system
Utility Patent
1998-06-15
2001-01-02
Gordon, Paul P. (Department: 2786)
Data processing: generic control systems or specific application
Specific application, apparatus or process
Specific application of positional responsive control system
C700S282000, C700S231000, C700S232000, C700S233000, C700S237000, C700S240000, C141S094000, C141S098000, C141S198000, C141S219000, C210S739000, C096S098000
Utility Patent
active
06169938
ABSTRACT:
The present invention relates generally to fuel dispensers and service stations and, more particularly, to a system to effectively control the fuel dispenser's vapor recovery system depending on the presence of an on-board recovery vapor recovery (ORVR) system on the vehicle and/or the type of fuel tank design of the vehicle.
It is well-known in the art at this time to provide communications between a fuel delivery system and a vehicle. Many systems are available which are capable of recognizing a vehicle automatically and providing communications to and from the vehicle from a fuel dispenser to keep track of customer billing or automobile diagnostics. U.S. Pat. No. 5,072,380 to Randelman et al. and U.S. Pat. No. 5,557,268 to Hughes et al. are exemplary of these systems. U.S. Pat. Nos. 5,359,522 and 5,204,819 to Ryan disclose the use of two-way RF communication systems between a vehicle computer and a fuel dispenser computer. The communication systems provide automatic activation of the fuel delivery transaction, identification of the fluid container for security and billing purposes, automatic payment without use of an identification card and memorializing fluid delivery transactions. Also disclosed is a passive communication device which uses part of the transmitted energy from the fuel dispenser for power.
U.S. Pat. No. 5,383,500 to Dwars et al. discloses a system controlling the automatic refueling of vehicles in a manner allowing a customer to control the refueling procedure without exiting the vehicle. The communications system has the capability to start, monitor and finish the refueling procedure by transmitting and receiving data signals concerning the refueling procedure, such as signals which start the refueling procedure and interrupt that procedure. Communication between the vehicle and dispenser is possible through infrared, electromagnetic or acoustic wave transmission.
U.S. Pat. No. 5,343,906 to Tibbels, III discloses a communication system linking a computer of a vehicle to a computer of a fuel dispenser via an electrical or fiber optic connection. The system validates emissions by monitoring various emissions and diagnostic aspects of the vehicle, storing the information and communicating the information to a fuel dispenser. The system is capable of maintaining a record of the vehicle's fueling and emissions history.
U.S. Pat. No. 4,934,419 to LaMont et al. discloses a fuel management system where an on-board computer communicates with a fuel dispenser using fiber optics. The disclosure primarily focuses on the management of information used in the operation of fleet vehicles. U.S. Pat. No. 5,156,198 to Hall discloses the use of a common core transformer for communications between a vehicle's on-board computer and a fuel dispenser computer. The dispenser identifies the vehicle, the amount of fuel supplied to the vehicle, the vehicle mileage since the last fueling, the date of such fueling, and the time of actual use of the vehicle.
The above references are indicative of the state-of-the-art relating to communications between a vehicle and a fuel dispenser. Various communication methods are used in such communications and a variety of information ranging from fueling information and vehicle identification to a emission control and vehicle monitoring are disclosed. However, none of the references discuss or suggest controlling a fuel dispenser's vapor recovery system based on the presence of an ORVR system or the vehicle's fuel tank design.
In some areas of the country, especially in high population density regions, fuel dispensers are already required to have vapor recovery systems to remove fuel vapors expelled from the vehicle's fuel fill neck during the in-rush of fuel during the fueling operation. In addition to vapor recovery systems on fuel dispensers, various environmental regulations will require vapor recovery systems on motor vehicles in the future. As noted, these on-board vapor recovery systems are generally referred to as ORVR systems. Difficulty arises when an ORVR-equipped vehicle is refueled at a fuel dispenser having a vapor recovery system. In certain instances, the vacuum created by the respective vapor recovery systems may cause false triggering of the fuel dispenser nozzle's cut-off mechanism, in addition to wasting energy and causing additional wear and tear by redundantly operating two vapor recovery systems. Furthermore, the simultaneous running of opposing vapor recovery systems may adversely affect the ultimate goal of vapor recovery performance.
For the past several years, the California Air Resources Board has proposed various regulations to limit the amount of fuel vapor released into the atmosphere during the refueling of a motor vehicle. During a conventional or standard fueling operation, incoming fuel displaces fuel vapor from the head space of a fuel tank and out through the fill pipe into the atmosphere, if not contained and recovered. The air pollution resulting from this situation is undesirable. Currently, many fuel dispensing pumps at service stations are equipped with vapor recovery systems that collect fuel vapor expelled from the fuel tank filler pipe during the refueling operation and transfer the vapor to a fuel storage tank.
Recently, ORVR systems have been developed in which the head space in the vehicle fuel tank is vented through a charcoal-filled canister so that the vapor is adsorbed by the charcoal. Subsequently, the fuel vapors are withdrawn from the canister into the engine intake manifold for mixture and combustion with the normal fuel and air mixture.
In typical ORVR systems, a canister outlet is connected to the intake manifold of the vehicle engine through a normally closed purge valve. The canister is intermittently subjected to the intake manifold vacuum with the opening and closing of the purge valve between the canister and intake manifold. A computer which monitors various vehicle operating conditions controls the opening and closing of the purge valve to assure that the fuel mixture established by the fuel injection system is not overly enriched by the addition of fuel vapor from the canister to the mixture.
Fuel dispensing systems having vacuum-assisted vapor recovery capability which are unable to detect vehicles equipped with ORVR systems will waste energy, increase wear and tear, ingest excessive air into the underground storage tank and cause excessive pressure build-up in the underground tank due to the expanded volume of hydrocarbon-saturated air. Recognizing an ORVR system and adjusting the fuel dispenser vapor recovery system accordingly eliminates the redundancy associated with operating two vapor recovery systems for one fueling operation. The problem of incompatibility of assisted vapor recovery and ORVR was discussed in “Estimated Hydrocarbon Emissions of Phase II and On-Board Vapor Recovery Systems” dated Apr. 12, 1994, amended May 24, 1994, by the California Air Resources Board (CARB). That paper mentions the possible use of a “smart” interface nozzle to detect an ORVR vehicle and close a vapor intake valve on the nozzle when an ORVR vehicle is being filled.
Adjusting the fuel dispenser's vapor recovery system will mitigate fugitive emissions by reducing underground tank pressure. Reducing underground tank pressure minimizes the “breathing” associated with pressure differentials between the underground tank and ambient pressure levels. If the vacuum created by the fuel dispenser's vapor recovery system is not reduced or shut off, air will be pumped to the underground tank, liquid fuel will evaporate to saturate the air, and the underground tank pressure will increase to the extent that hydrocarbons are released through a pressure vacuum valve or breathing cap associated with the underground tank. Reducing the vacuum created by the fuel dispenser's vapor recovery system when an ORVR system is detected prevents the ingestion of a volume of excess air into the underground tank. Adjusting the fuel dispenser's vapor recovery system i
Coats & Bennett P.L.L.C.
Gordon Paul P.
Marconi Commerce Systems Inc.
Patel Ramesh
LandOfFree
Transponder communication of ORVR presence does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Transponder communication of ORVR presence, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transponder communication of ORVR presence will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2545959