Transplant media

Chemistry: molecular biology and microbiology – Differentiated tissue or organ other than blood – per se – or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S001200, C435S001300

Reexamination Certificate

active

06696238

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to media comprising purified antimicrobial peptides, pore forming agents, and/or cell surface receptor binding compounds and their use for the storage and preservation of organs prior to transplant.
BACKGROUND OF THE INVENTION
A wide variety of organs, including kidneys, lungs, livers, hearts, pancreases, and small intestines are routinely and successfully transplanted. These organs are obtained either from living donors or from cadaveric sources.
In 1998, a total of 12,166 kidney transplants were performed in the United States by programs tracked by the UNOS Transplant Patient DataSource. A total of 45,189 people were on the waiting lists for kidneys as of Sep. 30, 1999. Over 20,000 kidneys were transplanted between Jul. 1, 1995 and Jun. 30, 1997. The graft survival rate for these 2(transplanted kidneys was 93.4% after three months.
The ability to store organs for two or three days prior to transplantation allows sufficient time for histo-compatibility testing of donor and recipient, transport of the organ between transplant centers, preoperative preparation of the recipient, preliminary donor culture testing, and vascular repair of the organ if needed. The efficacy of organ transplantation depends in part on how well the organ is preserved prior to transplantation. Two methods are used to preserve organs prior to transplant: hypothermic storage and continuous pulsatile perfusion. Hypothermic storage by simple cold storage methods involves removal of an organ from a donor followed by rapid cooling. Cooling is achieved by a combination of external cooling and a short period of perfusion with a chilled medium to reduce the core temperature of the organ as quickly as possible. The organs are then immersed in a flush-out medium at from 0° C. to 4° C. Continuous pulsatile perfusion involves the continuous infusion of organs with a preservation solution designed to prevent low temperature injury.
A number of media have been developed for infusing and preserving organs prior to transplantation. Examples of such media include VIASPAN (also known as University of Wisconsin solution; Barr Laboratories, Pomona, N.Y.), University of Wisconsin Machine Perfusion Solution, Hypertonic Citrate Solution, HTK Solution, HTK Solution of Bretschneider, Phosphate Buffered Sucrose, EuroCollins Solution, and Collins C2 Solution. However, none of these media are able to extend the preservation of organs past about 72 hours using cold storage methods. Additional preservation time would be useful for tests and for transportation of the organs. Furthermore, media that increase preservation time also can be expected to provide healthier organs for transplants performed within 72 hours.
Accordingly, what is needed in the art are improved media for preserving and storing organs prior to transplant. Such media should be able to extend the preservation period past 72 hours and provide organs with increased functionality upon transplant.
SUMMARY OF THE INVENTION
The present invention relates to media comprising antimicrobial polypeptides or pore forming agents and/or cell surface receptor binding compounds and their use for the storage and preservation of organs prior to transplant.
The present invention is not limited to any particular media or formulation. Indeed, a variety of medias and formulations are contemplated. In some embodiments, the present invention provides compositions comprising a purified antimicrobial polypeptide and hydroxyethyl starch. The present invention is not limited to any particular antimicrobial peptide. Indeed a variety of antimicrobial peptides are contemplated, including, but not limited to, those identified by SEQ ID NOs:1-96. In some preferred embodiments, the antimicrobial peptide is a defensin. The present invention is not limited to any particular defensin. Indeed, the use of a variety of defensins is contemplated, including, but not limited to those identified by SEQ ID NOs:37-96. In particularly preferred embodiments, the antimicrobial peptide is bovine dodecapeptide or BNP-1 (SEQ ID NO: 37). In some preferred embodiments, the antimicrobial polypeptide or defensin comprises D-amino acids. In some embodiments, the antimicrobial peptide and hydroxyethyl starch are in solution. The media of the present invention are not limited to any particular concentration of antimicrobial peptide. Indeed, a range of concentrations are contemplated (e.g., from about 0.01 to 1000 mg/l and preferably from about 0.1 to 5 mg/1). The present invention is not limited to any particular concentration of hydroxyethyl starch. Indeed, a range of concentrations are contemplated (e.g., from about 1 to 200 g/l). In some embodiments, the media further comprises a cell surface receptor binding compound. The present invention is not limited to any particular cell surface receptor binding compound. Indeed, a variety of cell surface receptor binding compounds are contemplated, including, but not limited to IGF-1, EGF, NGF, and substance P.
In other embodiments, the present invention provides compositions comprising an antimicrobial polypeptide and an impermeant anion selected from the group consisting of lactobionic acid and gluconate. In some preferred embodiments, the antimicrobial polypeptide and the impermeant ion are in solution. The present invention is not limited to any particular antimicrobial peptide. Indeed a variety of antimicrobial peptides are contemplated, including, but not limited to, those identified by SEQ ID NOs:1-96. In some preferred embodiments, the antimicrobial peptide is a defensin. The present invention is not limited to any particular defensin. Indeed, the use of a variety of defensins is contemplated, including, but not limited to those identified by SEQ ID NOs:37-96. In some preferred embodiments, the antimicrobial polypeptide or defensin comprises D-amino acids. In particularly preferred embodiments, the antimicrobial peptide is bovine dodecapeptide or BNP-1 (SEQ ID NO: 37). The media of the present invention are not limited to any particular concentration of antimicrobial peptide. Indeed, a range of concentrations are contemplated (e.g., from about 0.01 to 1000 mg/l and preferably from about 0.1 to 5 mg/l). The media of the present invention are not limited to any particular concentration of impermeant ion. Indeed, a range of concentrations are contemplated (e.g., from about 1 to 500 mM). In some embodiments, the media further comprises a cell surface receptor binding compound. The present invention is not limited to any particular cell surface receptor binding compound. Indeed, a variety of cell surface receptor binding compounds are contemplated, including, but not limited to IGF-1, EGF, NGF, and substance P. In some preferred embodiments, the media does not require the use of hydroxyethyl starch.
In other embodiments, the present invention provides compositions comprising an antimicrobial polypeptide and glutathione. In some preferred embodiments, the antimicrobial polypeptide and the impermeant ion are in solution. The present invention is not limited to any particular antimicrobial peptide. Indeed a variety of antimicrobial peptides are contemplated, including, but not limited to, those identified by SEQ ID NOs:1-96. In some preferred embodiments, the antimicrobial peptide is a defensin. The present invention is not limited to any particular defensin. Indeed, the use of a variety of defensins is contemplated, including, but not limited to those identified by SEQ ID NOs:37-96. In some preferred embodiments, the antimicrobial polypeptide or defensin comprises D-amino acids. In particularly preferred embodiments, the antimicrobial peptide is bovine dodecapeptide or BNP-1 (SEQ ID NO: 37). The media of the present invention are not limited to any particular concentration of antimicrobial peptide. Indeed, a range of concentrations are contemplated (e.g., from about 0.01 to 1000 mg/l and preferably from about 0.1 to 5 mg/l). The media of the present invention are not limited to any particular concentration of glutathione. Ind

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Transplant media does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Transplant media, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transplant media will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3331694

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.