Coating processes – Application to opposite sides of sheet – web – or strip
Reexamination Certificate
2000-06-01
2002-07-23
Beck, Shrive P. (Department: 1762)
Coating processes
Application to opposite sides of sheet, web, or strip
C427S385500, C427S393500, C427S407100, C427S412100, C427S412500
Reexamination Certificate
active
06423370
ABSTRACT:
PENDING APPLICATIONS
There are illustrated in copending application U.S. Ser. No. 09/118,459 now U.S. Pat. No. 6,171,702, the disclosure of which is totally incorporated herein by reference, coated substrates, and more specifically, a substrate with four layers, two coating layer substrates on the front side of the substrate and two coating layers on the reverse side of the substrate, wherein the front side coatings are comprised of a antistatic hydrophilic layer in contact with the substrate comprised of (1) a hydrophilic binder, (2) a water soluble filler, (3) a water insoluble filler, (4) an antistatic component (5) an optional filler dispersant, and (6) an optional biocide, and a second hydrophobic toner receiving coating situated on top of the first coating comprised of (1) a binder, (2) a toner wetting agent, (3) a lightfast UV absorber, (4) a lightfast antioxidant/antiozonant compound, and (5) a filler; and wherein the two coatings in contact with the reverse side of the substrate are comprised of a third hydrophilic antistatic coating comprised of (1) a binder polymer, (2) a water soluble filler, (3) a water insoluble filler, (4) an antistatic agent, (5) an optional filler dispersant and (6) an optional biocide, and a fourth toner receiving coating layer on top of the third hydrophilic coating comprised of (1) a latex binder, (2) a toner wetting agent, (3) a lightfast UV absorber, (4) a lightfast antioxidant compound, (5) a lightfast antiozonant compound, (6) an optional filler, and (7) an optional biocide.
Also there is illustrated in copending application U.S. Ser. No. 09/118,573, filed concurrently herewith, the disclosure of which is totally incorporated herein by reference, a composition comprised of a solvent, a polymeric binder, a dye mordant, a substantially water soluble anticurl compound, a substantially water soluble desizing compound, a lightfastness compound, a defoamer, an optional biocide, and an optional filler.
There also is illustrated in copending application U.S. Ser. No. 09/118,961 now U.S. Pat. No. 6,210,783, the disclosure of which is totally incorporated herein by reference, a transparency comprised of a supporting substrate, and thereover two coatings, (1) a first heat dissipating coating layer in contact with the substrate, and wherein the first coating is comprised of a heat dissipating binder optionally with a melting point in the range of from between about 100° C. to about 260° C. and an antistatic compound; and (2) a second ink receiving coating layer thereover comprised of a blend of a binder polymer, and an alkylated oxazoline, a lightfast UV compound, and an optional biocide.
The appropriate components and processes of the copending applications may be selected for the present invention in embodiments thereof.
BACKGROUND OF THE INVENTION
The present invention is directed to coated recording sheets such as transparencies and papers. More specifically, the present invention is directed to coated transparent recording sheets particularly suitable for use in electrophotographic and ink jet printing processes, and yet more specifically, the present invention is directed to xerographic and ink jet printable coated recording sheets such as transparencies comprised of a plastic substrate such as a polyester such as MYLAR®; (1) a first hydrophilic antistatic coating on the front surface of the substrate, (2) a second hydrophilic ink/toner receiving coating on the top of the first hydrophilic coating and capable of wetting and spreading the toner, (3) a third hydrophilic antistatic image enhancing coating on the backside of the substrate, and (4) a fourth hydrophilic ink/toner receiving coating in contact with the third antistatic coating on the back/reverse side of the substrate.
Specifically the present invention is directed to a method of preparing porous low haze, as measured with a XL-21 Hazegard, Hazemeter, and which low is for example, less than about 10, and more specifically, from about 3 to about 10, as measured by subtracting the value of transmittance of light through a transparency from 100, thus if the transmittance is 90, the haze value is 10, coated transparencies comprised of a supporting plastic substrate with two coating layers on the front side and two coating layers on the reverse side of the substrate; wherein the front side coatings are comprised of a first antistatic hydrophilic layer in contact with the substrate, and a second hydrophilic ink/toner receiving coating situated on top of the first coating and wherein the two coatings in contact with the reverse side of the substrate are comprised of a third hydrophilic antistatic luminescent coating in contact with the substrate, and a fourth hydrophilic ink/toner receiving layer on top of the third hydrophilic antistatic coating. The primary function of the back coatings is to prevent unnecessary transparency curling, for example values of more than about 25 millimeters are not usually considered acceptable, before and after ink jet printing with aqueous inks. Furthermore, the back coatings primarily enable for example the proper feeding of the transparencies in xerographic copiers, and avoidance, or minimization curling during the hot roll image fusing process. Moreover, in view of the presence of luminescent materials in the third coating the image density on the ink/toner layer is enhanced, for example, when the backgrounds are luminescent and colored such as magenta or yellow, the optical density values of the background adds up to the values of the optical density values of the image, thus these images appear brighter, such as on a yellow fluorescent background. The two front coatings can be applied simultaneously using a two slot die and dried at by heating such as heating at about 100 to about 125° C. The two back coatings can also be applied with a two slot die and are preferably dried by heating such as heating at about 140 to about 200, and more specifically about 150° C. to remove any excess trapped moisture remaining in the front coatings.
PRIOR ART
U.S. Pat. No. 4,956,225 discloses a transparency suitable for electrographic and xerographic imaging which comprises a polymeric substrate with a toner receptive coating on one surface thereof comprising blends selected from the group consisting of poly(ethylene oxide) and carboxymethyl cellulose; poly(ethylene oxide), carboxymethyl cellulose, and hydroxypropyl cellulose; poly(ethyleneoxide) and vinylidene fluoride/hexafluoro propylene copolymer; poly(chloroprene) and poly(alphamethyl styrene); poly(caprolactone) and poly(alpha-methylstyrene); poly(vinylisobutylether) and poly(alpha-methylstyrene); poly(caprolactone) and poly(p-isopropyl alpha-methylstyrene); blends of poly(1,4-butylene adipate) and poly(alpha-methylstyrene); chlorinated poly(propylene) and poly(alpha-methylstyrene); chlorinated poly(ethylene) and poly(alpha-methylstyrene); and chlorinated rubber and poly(alpha-methylstyrene). Also disclosed are transparencies with first and second coating layers.
U.S. Pat. No. 4,997,697 discloses a transparent substrate material for receiving or containing an image which comprises a supporting substrate base, an antistatic polymer layer coated on one or both sides of the substrate and comprising hydrophilic cellulosic components, and a toner receiving polymer layer contained on one or both sides of the antistatic layer, which polymer comprises hydrophobic cellulose ethers, hydrophobic cellulose esters, or mixtures thereof, and wherein the toner receiving layer contains adhesive components.
U.S. Pat. No. 5,202,205, the disclosure of which is totally incorporated herein by reference, illustrates a transparent substrate material for receiving or containing an image comprising a supporting substrate, an ink toner receiving coating composition on both sides of the substrate and comprising an adhesive layer and an antistatic layer contained on two surfaces of the adhesive layer, which antistatic layer comprises mixtures or complexes of metal halides or urea compounds both with polymers containing oxyalkylene segments.
U
Malhotra Shadi L.
Naik Kirit N.
Beck Shrive P.
Crockford Kirsten A.
Palazzo E. O.
LandOfFree
Transparencies does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Transparencies, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transparencies will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2862429