Transmitter pen location system

Computer graphics processing and selective visual display system – Display peripheral interface input device – Touch panel

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S175000, C345S177000, C345S179000, C178S018010

Reexamination Certificate

active

06335723

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to the field of location algorithms for remote devices. More particularly, the invention relates to an algorithm system for determining the position of an electronic pointing device.
BACKGROUND OF THE INVENTION
Digitizing pen and whiteboard systems are used for a variety of electronic applications. These systems typically include a whiteboard, a position indicating pen, and associated electronics for determining the interaction between the whiteboard and the position indicating pen. A digital data signal is typically derived to represent the relative position of the position indicating pen and the whiteboard.
When a signal, such as ultrasound, is used as a location signal for a remote device, it is often difficult to determine the location of the device accurately, since it is difficult to determine where upon each of sequential long wavepulses to measure, as a determination of the time of arrival to external receivers.
I. Gilchrist, Acoustic Mouse System, U.S. Pat. No. 5,144,594 (Sep. 3, 1992) discloses an acoustic mouse system, which “controls indications on an X-Y surface of the face of a display. The system comprises at least three acoustic receivers in an x-y plane, and a hand movable acoustic transmitter that is movable both parallel to the x-y plane and in a z direction perpendicular to the x-y plane. The transmitter generates periodic acoustic oscillations in the direction of the support and its receivers. Detection circuitry, responsive to the signals from the acoustic receivers, provides signals indicative of the absolute position of the acoustic transmitter in the x-y plane. A processor is responsive to the signals from the detection circuitry to provide absolute position signals to the display, whereby the display responds by moving an indication to a corresponding position on the X-Y surface of the display face. The detector circuitry is further enabled to provide z position signals to the display, whereby the display may modify a display function in accordance with the z position signals”. While Gilchrist discloses a generic, periodic acoustic wavelength position indicating system, Gilchrist fails to disclose a useful algorithm by which the position of the movable acoustic transmitter is determined. Furthermore, the system apparently requires a minimum of three acoustic receivers to properly locate the movable acoustic transmitter, and a minimum of four acoustic receivers to calibrate the system. Gilchrist also fails to disclose waveform analysis techniques which can be used to provide even greater accuracy in the determination of the movable acoustic transmitter. While Gilchrist discloses the preferred use of an infrared transmitter to transmit a mouse command signal or a control signal, Gilchrist fails to disclose the use of a combined signal, comprising a repeated infrared signal coupled to a repeated ultrasound signal, to more accurately locate a movable transmitter device.
M. Stefik and C Heater, Ultrasound Position Input Device, U.S. Pat. No. 4,814,552 (Mar. 21, 1989) discloses an “input device, or stylus, for entering hand drawn forms into a computer using a writing instrument, a pressure switch for determining whether the instrument is in contact with the writing surface, an acoustic transmitter for triangulating the position of the stylus on the surface, and a wireless transmitter for transmitting data and timing information to the computer. In operation, the stylus transmits an infrared signal which the system receives immediately, and an ultrasound pulse which two microphones receive after a delay which is a function of the speed of sound and the distance of the stylus from the microphone”. While Stefik et al. discloses an algorithm to analyze the incoming ultrasound signals to locate the stylus, the algorithm computes radii to each of the two microphones using information from only a single sonic pulse sample, translates the two radii into a calculated X,Y location, and then filters the calculated X,Y values, removing them from the described path if they vary from a specified limit, or range.
B. Edwards, Ultrasound Position Locating Method and Apparatus Therefor, U.S. Pat. No. 5,142,506 (Aug. 25, 1992) discloses a “positional locating method and apparatus for measuring distances by accurately determining the transit time of ultrasonic wave bursts between two or more points”. “Timer clocks are started when each of the bursts is triggered to be emitted from a transmission point, and are stopped when a highly defined point in the burst is received at a corresponding receiving point. The highly defined point is determined by first analyzing the burst to identify a particular cycle within the burst. The particular cycle is then analyzed to detect the specific point within the cycle”.
While Edwards typically uses multiple receivers to locate a transmitter using ordinary trigonometric calculations, the analog system is limited to the comparison of amplitude between a small number of measured peaks on successive cycles within “bursts” of the received ultrasonic waveform. Common variations of the waveform, typically due to ordinary use of a transmitter, either from the orientation of the transmitter to the receivers, the speed at which the transmitter is moved between different regions of a writing surface, the signal strength of the transmitted signal, or noise, can result in erroneous results. Reliance on the amplitude of a specific cycle within a pulse waveform can lead to errors of one or more cycles, resulting in position detection errors of several centimeters. Errors in such an analog system commonly result either in an inaccurate determined location for the transmitter, or in a determined location point which is required to be “thrown out” from the described path of the movable transmitter. As well, the analog system used inherently limits the type of comparison between the amplitude of selected cycle peaks within signal “bursts” within a prior output signal and a current output signal, thus preventing the analog system to being easily adaptable to hardware embodiments or improved waveform comparison techniques.
The disclosed prior art systems and methodologies thus provide basic transmitter pen and whiteboard positioning systems for determining the spatial relationship between a pen and a writing area, but fail to provide an accurate means for determining the position of the tip of the pen. It would be advantageous to provide a more accurate and reliable means to calculate the distance from a transmitter pen to external receivers, to improve the resolution of the pen by increasing the number of valid position data points, and to improve the precision and smoothness of a described path. It would also be advantageous to provide a means to store prior output signals, allowing the comparison of one or more features between the current output signal waveform and one or more prior output signal waveforms. In addition, it would also be advantageous to provide a means to customize or change the comparison between the current output signal waveform and one or more prior output signal waveforms. The development of such a transmitter pen positioning system would constitute a major technological advance.
SUMMARY OF THE INVENTION
A transmitter pen location system is provided, in which a pen is adapted to send a plurality of repeated output signals to two or more external receivers, wherein the location of the pointing tip of the pen is determined in relation to the writing area of a surface. A first output element, preferably an infrared transducer, transmits a first output signal from the transmitter pen. A second output element, preferably an ultrasonic transducer, transmits a second output signal from the transmitter pen to two or more receivers. In a basic embodiment, the first output signal arrives at one or more receivers generally concurrently. The second output signal, transmitted from the transmitter pen at a known time in relation to the first output signal, arrives at each of the receivers at a time which is

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Transmitter pen location system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Transmitter pen location system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transmitter pen location system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2854709

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.