Transmission system for transmitting digital signals in a...

Telecommunications – Radiotelephone system – Zoned or cellular telephone system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S447000, C370S342000, C370S330000

Reexamination Certificate

active

06591106

ABSTRACT:

BACKGROUND OF THE INVENTION
A radio subscriber terminal network is a system (typically covering an area) of radio cells which respectively contain a stationary base station (usually optimally centrally situated) about which the network terminations (NTs) of the radio subscriber are more or less evenly distributed in a radius of, for example, 1 km. Such a radio cell is sketched in
FIG. 1
, in which the base station is referenced BS and the radio subscribers (or respectively, their network terminations) are referenced NT. Since the radio field attenuation in a radio system increases quadratically with distance, the radio field strength at the cell margin is significantly less than in the cell interior; in
FIG. 1
this attenuation is illustrated with concentric circles about the base station. Additional attenuations conditioned by rain, for example, which likewise depend on distance, can additionally sharply reduce the receiving power available in the network terminations at the cell margin.
In such a radio system, which basically represents a point-to-multipoint system (the transmitter of the base station can reach the receivers of a plurality of subscribers), the signal transmission from the base station downstream to the radio subscribers can proceed in time division multiplex (TDM) in a 155 Mbit/s bit stream, and the signal transmission from the radio subscribers upstream to the base station can proceed in a TDMA (Time Division Multiple Access) method.
In such a system the Shannon channel capacity is not optimally exploited in two respects:
All network terminations (NT in
FIG. 1
) process the full total bit rate of 155 Mbit/s of the downstream time division multiplex signal, although only a small part of this bit rate is usually assigned to the respective network termination specifically. The high bandwidth of the time division multiplex signal therein leads to a correspondingly poor signal
oise power ratio at the subscriber-specific receiver. In particular, the transmitting power of the base station (BS in
FIG. 1
) is limited for reasons of telecommunications law and/or for technical reasons, the greatest possible cell radius therefore emerging from defined parameters such as RF transmitting frequency, total bit rate, directivity, and signal
oise ratio; in those network terminations (NT in
FIG. 1
) which are situated nearer to the base station, the reception power (and thus also the signal
oise power ratio) is greater than what is necessary for a prescribed bit error rate, so that transmitting power is “given away”.
The uniform distribution of the total available power over time t and frequency f (common in TDM) is illustrated by the “water-filling diagram” for a channel with a bandwith B, a period T and a transmitting power P
s
(FIG.
2
). Such an even power distribution as that which is illustrated by the hatched flat surface of the diagram in
FIG. 2
is ideal in a radio system in which all network terminations have the same constant distance from the base station. Taking the period T as constant, so that it need not be depicted in the diagram, and introducing the distance r from the base station as the third variable, the shaded curved surface in
FIG. 3
is obtained for the transmitting power P needed for a constant bit error rate, this surface emerging in that for each point of the plane the required power P for a prescribed bit error rate (for example, 10
−9
) is plotted. Given reliable multipath effects, P is barely dependent on the frequency. In turn, in
FIG. 3
the power distribution according to the “water-filling” algorithm (FIG.
2
), that is given a power P
s
which is not dependent on distance r, is illustrated in hatched fashion. The distance between the curved and the straight surfaces is then a measure of the power termed “given away” given a defined distance r.
To optimize the power distribution in the upstream direction (from the radio subscribers (NT) to the base station BS), the receiving power within a radio cell can be respectively measured at the individual network terminations NT and used as a measure of the respective radio field attenuation, according to which the transmitting power of the relevant network termination is correspondingly readjusted. To optimize the power distribution in the downstream direction (from the base station BS to the radio subscribers (NT)), the individual network terminations NT of a radio cell can be actuated in succession with adaptive antennas, the higher gain of such antennas compared to omnidirectional antennas permitting the bridging of correspondingly greater distances given the same transmitting power. Adaptive antennas are admittedly just at the beginning of development. Different modulation methods can also be utilized for more remote network terminations, on the one hand, and for network terminations in the vicinity of the base station, on the other hand, for example, 16QAM for the inner region and QPSK for the outer region of the radio cell. The required signal
oise ratio (S/N) is smaller in QPSK than in 16QAM by 7 dB. In 16QAM the linearity requirements are admittedly increased, specifically in the amplifiers. Such a method is suitable primarily for OFDM.
SUMMARY OF THE INVENTION
The invention now demonstrates another way to optimize the power distribution within a radio cell.
The invention relates to a system for transmitting digital signals in a radio subscriber terminal network, particularly in a broad-band RLL (Radio in the Local Loop) subscriber terminal network; this transmission system is inventively characterized in that, for the digital signal transmission from the base station of a radio cell to the radio subscribers located in the radio cell, the total transmitting power of the base station is divided into a plurality of frequency sub-bands and/or periods with different transmitting powers, and the digital signals assigned to radio subscribers located a greater or lesser distance from the base station are transmitted in frequency sub-bands and/or periods with correspondingly higher, or respectively, lower transmitting power of the base station.
Thus, in further developments of the invention, a fixed number of frequency sub-bands with respectively strictly prescribed transmitting power of the base station can be provided, from which one or more frequency sub-bands of the respectively required transmitting power are allocated to each connection from the base station to a radio subscriber, according to its distance from the base station. In a further development of the invention the transmitting power of the base station can also be modulated with one or more integral harmonics of a sinusoidal oscillation of a prescribed frequency, and a period of the required transmitting power can be allocated to each connection from the base station to a radio subscriber, according to its distance from the base station.
With such a power scaling in the frequency and/or time range, according to which scaling only a frequency band sub-region, or respectively, period with the respectively required base station transmission power is allocated to the connections, respectively just established, between base station and radio subscribers, the invention advantageously enables an optimal power distribution within the radio cell, it being possible either to reduce the total transmitting power of the base station, accordingly, or even to utilize the gained power to increase the cell radius, given a constant total transmitting power.
The modulation of the transmitting power with one or more sinusoidal oscillations which are integral harmonics of a sinusoidal oscillation of a prescribed frequency enables the specific allocation of phases of high, or respectively, low transmitting power to the individual connections between the base station and the more or less remote radio subscribers, according to the distance. Given sufficiently small modulation frequencies (for example, 10 Khz), a modulation of the transmitting power is associated only with a negligible broadening of the RF spectrum.
Given a division of th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Transmission system for transmitting digital signals in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Transmission system for transmitting digital signals in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transmission system for transmitting digital signals in a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3087753

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.