Transmission fluid conditioning apparatus and method for...

Measuring and testing – Simulating operating condition – Marine

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C184S001500

Reexamination Certificate

active

06412341

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates, in general, vehicle transmissions and, more specifically, to transmission coolant test apparatus and methods.
2. Description of the Art
Transmission fluid is used to lubricate and cool automatic transmissions such as those used in internal combustion engines in vehicles, such as cars, trucks, vans, etc. The high operating temperatures of automatic transmissions causes heat to be absorbed by the transmission fluid which must be removed to obtain the optimum lubrication performance of the transmission fluid.
Typically, an air to oil heat exchanger or an oil to coolant water heat exchanger separate from or integrated in the bottom portion of the vehicle radiator receives a coolant inlet line or conduit from the transmission and has an outlet conduit connected to the transmission to circulate transmission fluid between the transmission and the cooler to remove heat from the lubrication fluid.
During normal operation the various components of the transmission, such as gear sets, friction elements, bushing, thrust washers, for example, shed metal and non-metallic particles. When one or more components wears or fails, a significant amount of particulates become entrained in the transmission fluid which, as described above, continually circulates between the transmission and the cooler. Such particulates become lodged in the various components of the transmission and the cooler. Due to the close tolerances employed in various transmission components, such as valves, etc., such particulates can interfere with the normal operation of the component and/or transmission and can lead to a catastrophic failure of the transmission. Likewise, a significant accumulation of particulates within the cooler can clog the transmission fluid circulating inlet and outlet conduits and/or flow paths through the cooler thereby reducing the quantity of transmission fluid flowing to and from the cooler which results in an elevation of the temperature of the fluid causing it to lose a significant portion of its lubricating characteristics as well as reducing the lubricating effect of the fluid since reduced amounts of the fluid reach the individual components of the transmission. Hard particulates can also increase wear on contact surfaces, such as spalting of gear sets and scoring on thrust surfaces. Any of these conditions lead to a premature, catastrophic transmission failure.
Most OEM equipment procedures include periodic flushing of the cooler system, either as a preventative maintenance routine or a repair practice after catastrophic failure. However, flushing is not adequate to assure that the specified flow rate has been restored.
A coolant flow test can be performed on a transmission at any time during the operational life of the transmission or after a transmission has been rebuilt or a new transmission installed in a vehicle to check for an adequate flow rate through the cooler. In-line flow rate test equipment is available to provide direct read out of flow rate rather than resultant flow volume. One method to confirm cooler flow rate involves disconnection of the transmission fluid outlet conduit at the transmission and a timed collection of the fluid flowing through the conduit when the transmission fluid is at operational temperature, the transmission in neutral and the engine in an idle state. For example, a normal transmission coolant flow rate should yield a specific volume of fluid per minute. The collection of significantly lesser amounts of fluid within the set time period indicates that the transmission fluid cooler is clogged with particulates and should be flushed and/or replaced.
However, while the coolant flow test is relatively simple to conduct and takes only a short time to complete, transmission repair personnel typically forget or do not perform the test. Often this is due to lack of awareness of the procedure, performance specifications and the availability of test apparatus. This could lead to a situation where the metal particulates trapped within the cooler immediately become re-entrained in the transmission fluid upon the next engine operation which causes such particulates to be recirculated through the transmission. This could also lead to a situation where the particulates either occlude the cooler, restricting flow or the particulates become trapped again leading to the development of wear or contamination failure modes which will necessitate repair or replacement of the transmission.
It is also known to provide transmission fluid filters, such as that disclosed in U.S. Pat. No. 4,689,144, which utilize an internal magnet to attract metal particles entrained within the fluid as the fluid flows through the filter. However, the filter may become clogged and restrict flow or, if equipped with a bypass valve, allow contamination to recirculate. Further, the use of such a filter still requires a periodic transmission fluid flow test to ensure that all metal particles have been removed from the transmission fluid and to ensure that the fluid circulation system is operating properly since such filters cannot detect or protect against other causes of flow restriction, such as kinked or crimped hoses and tubing.
Thus, it would be desirable to provide a transmission fluid conditioning apparatus which encourages the conduction of a transmission fluid coolant flow test and the installation of a filter, preferably with bypass capabilities, each time a transmission fluid filter is installed in a transmission fluid line in a vehicle transmission. It would also be desirable to provide a transmission fluid conditioning apparatus which provides a quick indication of the level of contaminants in transmission fluid during a transmission fluid coolant flow test.
SUMMARY OF THE INVENTION
The present invention is a transmission fluid conditioning apparatus and method for facilitating conduction of transmission fluid coolant flow test. The method comprises the steps of providing a fluid receptacle having a fluid capacity sufficient for receiving a predetermined test amount of transmission coolant from a vehicle transmission and for storing a vehicle fluid filter in the fluid receptacle as a prepackaged kit. In another aspect, the method includes the step of storing transmission fluid filter installation connection components in the fluid receptacle. In one aspect, the method includes providing the fluid receptacle with an open end having an aperture sized for receiving transmission coolant fluid discharged from a vehicle transmission, and for removably closing the open end of the fluid receptacle prior to use.
The step of closing the open end of the fluid receptacle further comprises the steps of mounting a removable lid over the open end of the fluid receptacle, storing filter installation connection components in the fluid receptacle. The fluid installation components include at least one of a hose, a hose clamp and a hose connection fitting.
The method, in another aspect, includes the steps of providing indicia on the fluid receptacle indicating transmission coolant fluid quantities contained within the fluid receptacle during a transmission coolant flow test. In a preferred aspect, the method includes the step of providing at least two indicia on the fluid receptacle respectively indicative of a good transmission coolant fluid flow test wherein the upper level of the transmission fluid within the fluid receptacle during a transmission coolant flow test corresponds substantially to the location of one indicia, and, to indicate an unacceptable flow test when the transmission fluid collected during a predetermined test time period when conducting a transmission coolant flow test is below or at substantially the same level as the second indicator on the fluid receptacle.
A third indicia is spaced between the first and second indicia on the fluid receptacle and associated with a transmission fluid level in the fluid receptacle during conduction of a transmission coolant flow test indicative of an acceptable f

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Transmission fluid conditioning apparatus and method for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Transmission fluid conditioning apparatus and method for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transmission fluid conditioning apparatus and method for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2910846

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.