Transmission configuration

Optical communications – Transmitter – Including optical waveguide

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C398S182000, C398S140000, C398S141000, C385S027000, C385S032000, C385S033000, C385S038000

Reexamination Certificate

active

06785476

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention is in the field of optical data transmission with high transmission rates, through the use of multimode optical conductors. Such data transmission is based on the use of optical modules which include an electrooptical transmitter and/or receiver. The transmitter and/or receiver includes a module as an active component which is also referred to as an electrooptical transducer and which generates and emits (transmitter) light signals in the area of an optically active zone when stimulated electrically, and emits corresponding electrical signals (receiver) when light signals are applied to the optically active zone. Laser transmitters are being increasingly used in transmission modules, and are also suitable for satisfying economic aspects of increasingly stringent requirements for high-performance transmitters to generate short, high-quality optical signals or pulses.
The invention relates to a transmission configuration having a transmitter and a multimode optical conductor for passing on radiation emitted from the transmitter.
Such a transmission configuration is described in German Published, Non-Prosecuted Patent Application DE 196 45 295 A1, corresponding to U.S. application Ser. No. 09/301,136, filed Apr. 28, 1999. In that known configuration, an intermediate, additional pin stub including a monomode optical conductor is used for injecting light into one end of a multimode optical conductor. One end surface of the pin stub is in contact with an end of the multimode optical conductor. The light to be injected (for example emitted by a laser diode) is focused onto another, free end surface of the pin stub.
On one hand, in view of the increasing requirement for very high data transmission rates, it is necessary when using a multimode optical conductor (for example to transmit the emitted light signals to a receiver disposed at the other end of the optical conductor) to optimally illuminate the light-carrying core of the multimode optical conductor. On the other hand, the signal response of the laser transmitter must also be such that a required signal form is maintained over a wide operating range. For example, when using square-wave pulses for data coding, the emitted light signal must have a square-wave form which is as ideal as possible, in order to ensure data transmission without bit errors, or at least with few bit errors.
In the known configuration described initially, the pin stub including the monomode optical conductor results in the number of stimulated modes in the downstream multimode optical conductor being reduced. In order to additionally preclude stimulation effects resulting from vagabond light in an outer surface of the pin stub, in order to achieve a wide bandwidth, the pin stub has a light-dissipating region, in which its outer surface is surrounded by an external coating composed of a material having a higher refractive index than the refractive index of the outer surface material.
The known configuration is structurally relatively complex due to the interposition of the pin stub, and does not allow modes to be deliberately stimulated on the end surface of the light-conducting core of the multimode optical conductor or in specific, preferred regions of the core cross section. Since, however, by virtue of the production techniques, the light-conducting core may have poorer light-conduction characteristics in the center and only smaller amounts of light can be transported than in the region where the radii are greater, it is desirable to deliberately stimulate the core in peripheral regions.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a transmission configuration which overcomes the hereinafore-mentioned disadvantages of the heretofore-known devices of this general type.
With the foregoing and other objects in view there is provided, in accordance with the invention, a transmission configuration, comprising a transmitter for emitting radiation, the transmitter having a plurality of individual lasers in a two-dimensional laser array, the individual lasers emitting radiation elements with coupled phases upon stimulation; and a multimode optical conductor for passing on the radiation emitted from the transmitter; the radiation elements entering the multimode optical conductor together.
Laser transmitters which are suitable for this purpose and include a plurality of individual lasers are known per se in conjunction with the investigation of fundamental physical characteristics of lasers, for example from an article entitled “Coherent Beams From High Efficiency Two-Dimensional Surface-Emitting Semiconductor Laser Arrays” by P. L. Gourley et al., Applied Physics Letters 58 (9), 4 Mar. 1991, pages 890-892. That article describes two-dimensional configurations of lasers which are operated non-actively but are stimulated by so-called “photopumps” to emit radiation. The description covers close fields and far fields which are produced. The article does not include any further information relating to active operation of such a laser array in particular for data transmission at high transmission rates.
A major aspect of the present invention, on the other hand, is the simultaneous active operation of a plurality of individual lasers actuating in parallel, for example using the same electrical control signal, which are disposed at a short distance of, for example, 1 to 2 &mgr;m from one another. The configuration of the individual lasers in a common configuration (“array”) may be achieved, for example, by structuring the upper and/or lower laser mirror in a vertically emitting laser (VCSEL). In practice, it has been found in that case that even a minor difference in the reflection levels, for example 99.5% in the region of the individual lasers to 98% in the other regions located in between, is sufficient in order to define individual lasers. An alternative or additive option for structuring is to construct electrodes for actuation of the individual lasers as masks, or to structure the active region appropriately. A further major aspect of the configuration according to the invention is that the individual lasers also have the same dynamic response, by virtue of their identical geometries and production processes.
The close proximity of the individual lasers results in the lasers being coupled to one another, in such a manner that a higher-order, two-dimensional, phase-coupled oscillation state is produced. In this oscillation state, it is possible to emit a single mode longitudinally and transversely. The invention makes use of the knowledge that this monomode characteristic leads to a modulation response which provides an advantageous pulse shape for digital transmission, and thus represents a significant improvement in the transmission rates and the transmission capacity.
With such a configuration of individual lasers, it is possible to produce a far field, through the use of which the bandwidth of a multimode optical conductor can be utilized particularly well.
In accordance with another feature of the invention, particularly good utilization of the transmission characteristics of a multimode optical conductor can be advantageously achieved by causing the radiation elements to enter symmetrically about the optical axis of the multimode optical conductor.
In accordance with a further feature of the invention, the geometrical configuration of the individual lasers, in particular in a 2*2 matrix, allows beamforming through the use of a beamforming element disposed between the transmitter and one end of the multimode optical conductor.
In accordance with a concomitant feature of the invention, beamforming is carried out in such a way that the emitted radiation enters predominantly away from the core center, to be precise, in a particularly preferred manner, in the region between 10% and 50% of the core radius. Due to the production and selection processes used for multimode optical conductors, a particularly high transmission rate is normally achieved in this region.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Transmission configuration does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Transmission configuration, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transmission configuration will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3288380

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.