Transition metal catalysts for diene polymerizations

Catalyst – solid sorbent – or support therefor: product or process – Catalyst or precursor therefor – Organic compound containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C502S103000, C502S104000, C502S117000, C502S115000, C526S161000, C526S115000

Reexamination Certificate

active

06656867

ABSTRACT:

BACKGROUND OF THE INVENTION
A wide variety of catalyst systems can be used in the polymerization of diene monomers, such as 1,3-butadiene or isoprene, into polymers. For instance, anionic polymerization techniques that utilize alkyl lithium initiators can be used to polymerize 1,3-butadiene into polybutadiene rubber or to polymerize isoprene into polyisoprene rubber. Copolymers of diene monomers and vinyl aromatic monomers, such as styrene, can also be made by anionic polymerization techniques. For instance, anionic polymerization techniques can be used to copolymerize 1,3-butadiene and styrene to make styrene-butadiene rubber (SBR).
U.S. Pat. No. 5,906,956 discloses an initiator system which is comprised of (a) a lithium initiator, (b) a sodium alkoxide, and (c) a polar modifier. This anionic system can be used to polymerize 1,3-butadiene into polybutadiene having a high vinyl content or to polymerize isoprene into polyisoprene having a high 3,4-isomer content.
U.S. Pat. No. 5,753,579 discloses a process for synthesizing polymers having high trans-isomer contents with an initiator system which is comprised of (a) at least one organolithium or organomagnesium initiator, (b) an organoaluminum compound, (c) a barium compound, and (d) an organozinc compound.
U.S. Pat. No. 5,100,982 discloses a catalyst system which can be utilized in the polymerization of 1,3-butadiene monomer into trans-1,4-polybutadiene. This catalyst system is comprised of an organocobalt compound, an organoaluminum compound, a para-alkyl substituted phenol which contains from about 12 to about 26 carbon atoms, and carbon disulfide.
Lanthanide and actinide catalyst systems are considered to be “pseudo-living” because polymers synthesized with such rare earth systems increase in molecular weight with increasing conversions. Conjugated diolefin monomers can be polymerized into rubbery polymers using such catalyst systems. More specifically, 1,3-butadiene can be polymerized into high cis-1,4-polybutadiene with a catalyst system which is comprised (i) an organoaluminum compound, (ii) an oganometallic compound which contains a lanthanide metal from Group III-B, such as neodymium, praseodymium, cerium, or gadolinium, and (iii) a labile halide ion. U.S. Pat. No. 4,663,405 discloses technique for controlling the molecular weight of polymers made with such lanthanide or actinide catalyst systems by conducting the polymerization in the presence of a vinyl halide.
U.S. Pat. No. 5,834,573 discloses a process for synthesizing trans-1,4-polybutadiene by polymerizing 1,3-butadiene monomer in the presence of a catalyst system which is comprised of cobalt (III) acetylacetonate, an organoaluminum compound, and a para-alkyl-substituted phenol, wherein the cobalt (III) acetylacetonate is mixed with a portion of the para-alkyl-substituted phenol prior to the polymerization and wherein the organoaluminum compound is mixed with the balance of the para-alkyl-substituted phenol prior to the polymerization.
U.S. Pat. No. 5,811,499 discloses a process for synthesizing cis-1,4-polybutadiene rubber which comprises polymerizing 1,3-butadiene in the presence of (a) an organocobalt compound, (b) a trialkylaluminum compound, and (c) hexafluoro-2-propanol.
High cis-1,4-polybutadiene rubber can be make with nickel catalyst systems which are comprised of (i) an organonickel compound, (ii) an organoaluminum compound, and (iii) a fluorine containing compound. U.S. Pat. No. 5,698,643 discloses such a nickel catalyst system where the molecular weight of the high cis-1,4-polybutadiene rubber produced is controlled by the addition of 1-butene, isobutylene, cis-2-butene, trans-2-butene, or allene.
U.S. Pat. No. 4,048,418 discloses a method of polymerizing conjugated diolefin monomers containing from 4 to about 12 carbon atoms into high molecular weight polymers by bringing the conjugated diolefin monomers into contact with a catalyst system consisting of (i) an iron-containing compound, (ii) an organometallic reducing agent from Group I or III of the Periodic Table, and (iii) a nitrogen-containing ligand.
U.S. Pat. No. 5,866,663 to Brookhart discloses a process for polymerizing olefins, such as ethylene, acyclic olefins, and/or selected cyclic olefins. The polymerizations of U.S. Pat. No. 5,866,663 are catalyzed by selected transition metal compounds, such as iron (II) compounds, and sometimes other co-catalysts.
SUMMARY OF THE INVENTION
This invention is based upon the unexpected discovery that certain catalyst systems which are comprised of (A) a transition metal compound selected from the group consisting of iron (II) compounds, iron (III) compounds, cobalt (II) compounds, cobalt (III) compounds, and nickel (II) compounds; (B) a ligand selected from the group consisting of certain azopyridines and certain iminopyridines; and (C) methylalumoxane can be used to catalyze the polymerization of diene monomers, such as 1,3-butadiene and isoprene, into polymers, such as high cis-1,4-polybutadiene rubber. Some representative examples of azopyridines that can be utilized in the catalyst systems of this invention include 2-phenylazopyridine, 4-methyl-2-phenylazopyridine, and 2,6-diphenylazopyridine.
This invention more specifically discloses a catalyst system which is comprised of (A) a transition metal compound selected from the group consisting of iron (II) compounds, iron (III) compounds, cobalt (II) compounds, cobalt (III) compounds, and nickel (II) compounds; (B) a ligand selected from the group consisting of (i) azopyridines of the structural formula:
(ii) azopyridines of the structural formula:
(iii) iminopyridines of the structural formula:
and (iv) iminopyridines of the structural formula:
wherein R represents a hydrogen atoms, a hydrocarbyl groups, or a substituted hydrocarbyl groups, and wherein R
1
represents a hydrogen atom or a methyl group; and (C) methylalumoxane.
This invention also reveals a process for synthesizing a rubbery polymer which comprises polymerizing at least one diene monomer in the presence of a catalyst system which is comprised of (A) a transition metal compound selected from the group consisting of iron (II) compounds, iron (III) compounds, cobalt (II) compounds, cobalt (III) compounds, and nickel (II) compounds; (B) a ligand selected from the group consisting of (i) azopyridines of the structural formula:
(ii) azopyridines of the structural formula:
(iii) iminopyridines of the structural formula:
and (iv) iminopyridines of the structural formula:
wherein R represents a hydrogen atom, a hydrocarbyl group, or a substituted hydrocarbyl group, and wherein R
1
represents a hydrogen atoms or a methyl groups; and (C) methylalumoxane.
The subject invention further discloses a process for synthesizing a polybutadiene rubber which comprises polymerizing 1,3-butadiene at a temperature which is within the range of about 10° C. to about 100° C. in the presence of a catalyst system which is comprised of (A) a transition metal compound selected from the group consisting of iron (II) compounds, iron (III) compounds, cobalt (II) compounds, cobalt (III) compounds, and nickel (II) compounds; (B) a ligand selected from the group consisting of (i) azopyridines of the structural formula:
(ii) azopyridines of the structural formula:
(iii) iminopyridines of the structural formula:
and (iv) iminopyridines of the structural formula:
wherein R represents a hydrogen atom, a hydrocarbyl group, or a substituted hydrocarbyl group, and wherein R
1
represents a hydrogen atoms or a methyl groups; and (C) methylalumoxane.
The present invention further reveals a catalyst system which is comprised of (A) a transition metal compound selected from the group consisting of iron (II) compounds, iron (III) compounds, cobalt (II) compounds, cobalt (III) compounds, and nickel (II) compounds; (B) a ligand selected from the group consisting of (i) azopyridines of the structural formula:
(ii) azopyridines of the structural formula:
(iii) iminopyridines of the structural formula:
and (iv) iminopyridines of the structural formula:
wherein R represents a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Transition metal catalysts for diene polymerizations does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Transition metal catalysts for diene polymerizations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transition metal catalysts for diene polymerizations will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3141464

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.