Transillumination of body members for protection during body...

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S476000, C128S899000

Reexamination Certificate

active

06597941

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a method and apparatus for transillumination of various parts of a living body to avoid damaging such parts during an invasive procedure and more specifically to the use of two different light sources in such procedures.
BACKGROUND OF THE INVENTION
Although the present invention is described in connection with protection of a ureter during a surgical procedure, this is done merely for purposes of ease of illustration; the invention being useful for protection of various body parts lying adjacent to a region subjected to an invasive procedure.
Currently practiced methods and devices used to transilluminate the ureters to permit ready location and thus protection of the ureter during endoscopic procedures require the cystoscopic placement of a catheter housing and a fiber optic light guide into the lumen of the ureter. The distal portion of the fiber optic light guide is treated to allow light preferably to emit circumferentially from the wall of the fiber. The proximal end of the fiber is coupled to a visible light source. A second light source is coupled to an endoscope and introduced into the surgical site.
Light detection of the transilluminated ureter using typical illuminating catheters such as the Bush DL™ Ureteral Illuminating Catheter Set coupled to a light source during endoscopic procedure is facilitated with a camera. The camera projects the detected image of the transilluminated ureter on a monitor for visualization. Sufficient light from the predicate devices must traverse the ureter and overlying tissues with ample intensity to penetrate surrounding tissue and to overcome the illuminated field from the endoscopic light for the camera to detect light emanating from the transilluminated ureter. In the presence of the normally illuminated operative field from the endoscopic light, the camera frequently cannot detect light emanating from the transilluminated ureter. In an attempt to optimize and intraoperatively improve the performance of their device, Cook Urological, Inc., suggests that it may be necessary to dim or eliminate the endoscopic light illuminating the surgical field. The same problems are encountered in open field surgery where the overhead lights in the operating room may have as great an effect as the endoscopic light source.
OBJECTS OF THE INVENTION
It is an object of the present invention to permit ready detection of preferably both an infrared light source as well as a more standard light source as opposed to only an endoscopic light source during an invasive procedure in a region of a body adjacent the ureter or other body member to be protected.
It is another object of the present invention to provide a system and method permitting ease of discrimination of light energy emanating from a body member to be protected during an invasive procedure adjacent said body member from light introduced to illuminate the region of the procedure adjacent such body member.
It is yet another object of the present invention to protect a body member during a surgical procedure adjacent thereto by emitting modulated electromagnetic radiation from such member to permit ready detection of such radiation in the presence of visible light illuminating the area of the procedure.
Still another object of the present invention is to transmit infrared light through a body part to be protected during a surgical procedure and to maintain the surgical site otherwise free of infrared energy by filtering out infrared energy from an endoscopic or other light source if such is employed.
Yet another object of the present invention is to transmit continuously electromagnetic energy through a body member to be protected during an invasive procedure in a region adjacent thereto and to pulse a light employed to illuminate the region during the procedure.
Another object of the present invention is to synchronize emissions of electromagnetic energy from a body to be protected during a surgical procedure in a region adjacent thereto with emission of light into the region for illumination thereof.
Still another object of the present invention is to synchronize a camera shutter with periodic emission of light into a region being subjected to an invasive procedure with periodic emission of detectable energy from a body member to be protected from injury during such invasive procedure.
Yet another object of the present invention is to couple an optical fiber employed to detect light emitted by a source located in a body part to be protected, to a surgical instrument to be inserted into a body cavity in which a procedure is to be conducted.
It is still another object of the present invention to transmit infrared energy through a body member to be protected during surgery into a region illuminated by an endoscopic light source from which infrared energy has essentially been removed.
Another object of the present invention is to employ an infrared energy source to illuminate a region of a body and view the region with a camera sensitive to both visible and infrared light energy.
Yet another object of the present invention is to transilluminate a body member or region with infrared energy to enhance the view of the region whereby to facilitate a surgical procedure.
Still another object of the present invention is to transmit infrared light energy down a nerve to be protected during a surgical procedure to cause the nerve to become an infrared light energy transmitter.
BRIEF DESCRIPTION OF THE PRESENT INVENTION
The use of infrared emission detection is central to the technology of the present invention.
In particular, the technology takes advantage of the inherent transmissivity of infrared through biological tissues in the range from 700 nm to 1,300 nm. Optically, all biological tissues are considered composite structures consisting of a scattering medium imbibed with various molecular components that absorb light at specific wavelengths. The amount of light absorbed by different molecules is dependent on the chemical and physical properties of the molecule. In the visible part of the spectrum (400 to 650 nm), intense absorption due to hemoglobin and light loss caused by scattering prevents transmission of visible light over more than a few millimeters of tissue. In the infrared spectrum above 1,300 nm, water present in tissue acts as an effective absorber of infrared at this wavelength, again limiting the transmission of infrared longer than 1,300 nm to a short distance. In the infrared range of 700 to 1,300 nm, however, a significant amount of infrared light can be transmitted through several centimeters of biological tissue. This window of high transmissivity is due to the lack of lack of molecular components that absorb infrared between 700 nm and 1,300 nm.
The present invention makes use of the fact that infrared energy can be transmitted through several centimeters of biological tissues to implement various procedures such as protection of organs, etc., during invasive procedures adjacent an organ, to transilluminate an organ to locate it and view it and to render nerves visible over a length thereof.
In a first embodiment of the invention a probe is employed to detect infrared energy during a laparoscopic operation. An endoscopic light source is pulsed while continuous emissions of infrared energy are provided from within a body member to be protected, such as a ureter, duct, colon, blood vessel or other body member. The visible and infrared light energies are directed by the probe to a video camera and then to a monitor. The endoscopic light source is pulsed on at every other frame or half frame of an interlaced display on the monitor so that every other full frame or half frame displays both the member to be protected and the area of the operation and the next frame or half of the interlaced frame displays only the emission from within the body member to be protected. Thus, the body member emission is enhanced.
In a second embodiment of the invention an infrared light energy source is disposed in a body member to be protected during s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Transillumination of body members for protection during body... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Transillumination of body members for protection during body..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transillumination of body members for protection during body... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3101418

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.