Transgenic plants and methods for production thereof

Multicellular living organisms and unmodified parts thereof and – Method of introducing a polynucleotide molecule into or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C800S281000, C800S284000, C800S286000, C800S288000, C800S289000, C800S294000, C800S300000, C435S069100, C435S252200, C435S320100, C435S430100, C435S431000

Reexamination Certificate

active

06753459

ABSTRACT:

FIELD OF THE INVENTION
The present invention is related to transgenic plants and, in particular, transgenic plants suitable for environmentally responsible field release and genetic constructs and vectors for production thereof. The present invention also relates to novel genetic constructs for the convenient selection and identification of transgenic plants and to progeny derived therefrom. The present invention is additionally related to novel vectors and transformation methods for production of transgenic Brassica species.
BACKGROUND ART
Transgenic Plants
It is known that new and altered traits (so-called “novel traits”) can be imparted to crop species by recombinant DNA technology. In order to derive these crops with novel traits, a method to insert recombinant DNA into the crop genome is required. This method, commonly referred to as transformation, is technically challenging and requires significant effort in developing the protocols for culture, transformation itself and regeneration of whole plants. In some species transformation has become routine, while in other species transformation remains difficult and time-consuming. Nevertheless, some crop varieties that were genetically engineered to express novel traits have been released into the commercial production chain, and others are undergoing field trials in preparation for commercial release
Many of these transgenic crop varieties have novel traits that provide altered phenotypes. These phenotypes include novel compositions, enhanced resistance to pests, disease or environmental stresses, and tolerance to herbicides. Such tolerance provides new means to control weeds and new production opportunities for farmers.
Many current novel traits in commerce affecting agronomic characteristics are collectively referred to as “input” traits, i.e. those traits that relate to the economics of production. For example, herbicide tolerance is an input trait as it allows farmers more options in controlling weeds; typically the costs of weed control can be lowered by these novel herbicide tolerances. Thus the economics of production or “inputs” required to grow the crop are favorably altered. Other traits such as resistance to insects can lower the costs for farmers through reduced chemical insecticide applications.
In addition to input traits, there are “output” traits that alter the composition or quality of the harvested plant. Such traits impact the final products or “outputs” from a crop and can include altered oil or meal composition, reduced antinutritional content and crops with altered processing characteristics. There has been a considerable effort towards the development of crops with output traits that provide new products, economic value and increased utility.
Some traits are classified as high-value “output” traits. Such traits reside in crop plants used for “molecular farming” to produce novel proteins with commercial or pharmaceutical applications. Molecular farming holds considerable promise for the economical production of large volumes of commercially useful and valuable proteins. Use of crop plants to mass produce proteins offers many advantages over fermentation technology including: ease of production; stability of the product when synthesized in plant storage organs such as tubers or seed; and possibility of recovering valuable co-products such as meal, oil or starch from the plants.
Proteins contemplated for mass production by molecular farming include industrial enzymes; for example, those derived from microbial sources such as proteases, starch or carbohydrate modifying enzymes (e.g. alpha amylase, glucose oxidase, cellulases, hemicellulases, xylanases, mannanases or pectinases). Additionally, the production of enzymes such as ligninases or peroxidases which are particularly valuable in the pulp and paper industry, has been suggested within various crop species. Other examples of commercially or industrially important enzymes which can be produced using molecular farming are phosphatases, oxidoreductases and phytases. The number of industrially valuable enzymes is large and plants offer a convenient vehicle for the mass production of these proteins at costs anticipated to be competitive with fermentation.
Additionally, molecular farming is being contemplated for use in the production and delivery of vaccines, antibodies (Hein, M. B. and Hiatt, A. C., U.S. Pat. No. 5,202,422), peptide hormones (Vandekerckhove, J. S., U.S. Pat. No. 5,487,991), blood factors and the like. It has been postulated that edible plants which have been engineered to produce selected therapeutic agents could provide a means for drug delivery which is cost effective and particularly suited for the administration of therapeutic agents in rural or under-developed countries. The plant material containing the therapeutic agents could be cultivated and incorporated into the diet (Lam, D. M., and Arntzen, C. J., U.S. Pat. No. 5,484,719).
In total, the novel input and output traits contemplated for crop plants are very broad in scope and can lead to the development of numerous new products and processes. Accordingly, reliable means to produce plants with novel traits and incorporate the initial transgenic plants into breeding and variety development programs are important tools for the delivery of these products into commerce.
A problem of transgenic plant production is that upon recovery of a transgenic event in a plant cell, a considerable effort is needed to recover morphologically normal, fertile plants for use in subsequent breeding schemes. Thus methods that allow for the simple identification of plants that have received the transgene is a primary objective for commercialization.
The selection or identification of transgenic plants by reliable methods that do not require biochemical or calorimetric assays are particularly convenient. A method that allows for flexibility can be additionally valuable, such as a scheme that can be used at any point in the development of a transgenic variety. A most preferred method would allow selection in culture, identification in breeding and introgression activities, as well as identification and discrimination at the field level.
Concerns Associated with Field Release of Transgenic Plants
It has been suggested that the release of genetically modified crops could lead to environmental damage because of their expression of genetic potential that would not ordinarily be attained by natural selection or via sexual recombination. It has further been suggested that released transgenic plants could invade natural ecosystems either through the spread of the plants themselves or through hybridization with wild relatives. These issues have been extensively debated and experimentation has been initiated to test for continued survival of transgenic plants and transfer of traits from crop species to wild relatives. (e.g. University of California,
Risk assessment in agricultural biology: proceedings of an international conference,
1990, Casper, R., & Landsman, J., 1992; The bio-safety results of field tests of genetically modified plants and microorganisms.
Proceedings of the
2
nd International Symposium on The Biosafety Results of Field Tests of Genetically Modified Plants and Microorganisms,
1992, Goslar, Germany, Dale, P. et al., 1992; The field release of transgenic plants, The British Crop Protection Council.
Brighton Crop Protection Conference: Pests and Diseases,
Vols. I, II and III;
Proceedings of the
3
rd International Symposium on The BioSafety Results of Field Tests of Genetically Modified Plants and Microorganisms,
1994, Monterey, Calif., Jones, D. D., 1994)
The consensus of the studies and experimental results achieved to date supports the view that the degree of potential spread of transgenes to wild relatives is highly dependent upon the species and environmental conditions. Crossing with relatives is not likely with some species and probable for others (Raybould & Grey, J.,
Applied Ecology
30: 199-219, 1993). The degree to which any transformed plant can be invasive of other habitats,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Transgenic plants and methods for production thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Transgenic plants and methods for production thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transgenic plants and methods for production thereof will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3340842

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.