Transgenic non-human animals capable of producing heterologous a

Multicellular living organisms and unmodified parts thereof and – Nonhuman animal

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4351723, 536 2353, 536 231, 536 235, 800DIG1, 800DIG4, C12N 1500, C07H 2102, C07H 2104

Patent

active

058773975

ABSTRACT:
The invention relates to transgenic non-human animals capable of producing heterologous antibodies and transgenic non-human animals having inactivated endogenous immunoglobulin genes. In one aspect of the invention, endogenous immunoglobulin genes are suppressed by antisense polynucleotides and/or by antiserum directed against endogenous immunoglobulins. Heterologous antibodies are encoded by immunoglobulin genes not normally found in the genome of that species of non-human animal. In one aspect of the invention, one or more transgenes containing sequences of unrearranged heterologous human immunoglobulin heavy chains are introduced into a non-human animal thereby forming a transgenic animal capable of functionally rearranging transgenic immunoglobulin sequences and producing a repertoire of antibodies of various isotypes encoded by human immunoglobulin genes. Such heterologous human antibodies are produced in B-cells which are thereafter immortalized, e.g., by fusing with an immortalizing cell line such as a myeloma or by manipulating such B-cells by other techniques to perpetuate a cell line capable of producing a monoclonal heterologous antibody. The invention also relates to heavy and light chain immunoglobulin transgenes for making such transgenic non-human animals as well as methods and vectors for disrupting endogenous immunoglobulin loci in the transgenic animal.

REFERENCES:
patent: 4204244 (1980-05-01), Fell et al.
patent: 5175384 (1992-12-01), Krimpenfort
patent: 5416260 (1995-05-01), Koller
Muler et al Nature 295: 428, 1982.
Srujzerian et al PNAS 86: 6709, 1989.
Buttin, Exogenous Ig gene rearrangement in transgenic mice: a new strategy for human monoclonal antibody production? TIG--vol. 3, No. 8 (Aug. 1987).
Green et al., Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs, Nature Genetics 7:13-21 (1994).
Hofker et al., Complete physical map of the human immunoglobulin heavy chain constant region gene complex, Proc. Natl. Acad. Sci. USA 86:5567-5571 (1989).
Humphries et al., A new human immunoglobulin V.sub.H family preferentially rearranged in immature B-cell tumours, Nature 331:446-449 (1988).
Jaenisch, Transgenic Animals, Science 240:1468-1474 (1988).
Jakobovits et al., Analysis of homozygous mutant chimeric mice: Deletion of the immunoglobulin heavy-chain joining region blocks B-cell development and antibody production, Proc. Natl. Acad. Sci. USA 90:2551-2555 (1993).
Lonberg et al., Antigen-specific human antibodies from mice comprising four distinct genetic modifications, Nature 368:856-859 (1994).
Miller et al., Structural alterations in J regions of mouse immunoglobulin .lambda. genes are associated with differential gene expression, Nature 295:428-430 (1982).
Morrison, Success in specification, Nature 368:812-813 (1994).
Pettersson et al., A second B cell-specific enhancer 3' of the immunoglobulin heavy-chain locus, Nature 344:165-168 (1990).
Scangos and Bieberich, Gene transfer into mice, Advances in Genetics 24: 285-322 (1987).
Stites et al., Basic & Clinical Immunology, p. 50 (1984).
Tanaka et al., An antisense oligonucleotide complementary to a sequence in I.gamma.2b Increase .gamma.2b germline transcrips, stimulates B cell DNA synthesis, and inhibits immunoglobulin secretion, The Journal of Experimental Medicine 175:597-607 (1992).
Taki et al., Targeted insertion of a variable region gene into the immunoglobulin heavy chain locus, Science 262:1268-1271 (1993).
Taylor et al., Human immunoglobulin transgenes undergo rearrangement, somatic mutation and class switching in mice that lack endogenous IgM, International Immunology 6:579-591 (1994).
Vlasov et al., Arrest of immunoglobulin G mRNA translation in vitro with an alkylating antisense oligonucleotide derivative, Chemical Abstracts, p. 28, 112:229433X (1990).
Weiss, Mice making human-like antibodies, The Washington Post, Apr. 28, 1994.
Alt et al., Immunoglobulin genes in transgenic mice, TIG--Aug. 1985.
Berman et. al., Content and organization of the human Ig V.sub.H locus: definition of three new V.sub.H families and linkage to the Ig C.sub.H locus, The EMBO J. 7:727-738 (1988).
Berton et. al., Synthesis of germ-line .gamma.1 immunoglobulin heavy-chain transcripts in resting B cells: Induction by interleukin 4 and inhibition by interferon .gamma., Proc. Natl. Acad. Sci. (U.S.A) 86:2829-2833 (1989).
Bollag et al., Homologous recombination in mammalian cells, Annu. Rev. Genet. 23:199-225 (1989).
Bruggemann et al., Human antibody production in transgenic mice: expression from 100 kb of the human IgH locus, Eur. J. Immunol. 21:1323-1326 (1991).
Bruggemann et al., A repertoire of monoclonal antibodies with human heavy chains from transgenic mice, Proc. Natl. Acad. Sci. USA 86:6709-6713 (1989).
Bucchini et al., Rearrangement of a chicken immunoglobulin gene occurs in the lymphoid lineage of transgenic mice, Nature 326:409-411 (1987).
Capecchi, The new mouse genetics: Altering the genome by gene targeting, TIG 5:70-76 (1989).
Capecchi, Altering the genome by homologous recombination, Science 244:1288-1292 (1989).
Coffman et. al., T cell activity that enhances polyclonal IgE production and its inhibition by interferon-.gamma., J. Immunol. 136:949-954 (1986).
Coffman et al., A mouse T cell product that preferentially enhances IgA production, J. Immunol. 139:3685-3690 (1987).
Doetschman et al., Targetted correction of a mutant HPRT gene in mouse embryonic stem cells, Nature 330:576-578 (1987).
Durdik et al., Isotype switching by a microinjected .mu. immunoglobulin heavy chain gene in transgenic mice, Proc. Natl. Acad. Sci. USA 86:2346-2350 (1989).
Esser and Radbruch, Rapid induction of transcription of unrearranged S.gamma.1 switch regions in activated murine B cells by interleukin 4, The EMBO J. 8:483-488 (1989).
Ferrier et al., Separate elements control DJ and VDJ rearrangement in a transgenic recombination substrate, The EMBO J. 9:117-125 (1990).
Forni, extensive splenic B cell activation in IgM-transgenic mice, Eur. J. Immunol. 20:983-989 (1990).
Gerstein et al., Isotype switching of an immunoglobulin heavy chain transgene occurs by dna recombination between different chromosomes, Cell 63:537-548 (1990).
Goodhardt et al., Rearrangement and expression of rabbit immunoglobulin .kappa. light chain gene in transgenic mice, Proc. Natl. Acad. Sci. (U.S.A.) 84:4229-4233 (1987).
Gordon, Transgenic mice in immunology, The Mount Sinai Journal of Medicine 53:223-231 (1986).
Hagman et al., Inhibition of immunoglobulin gene rearrangement by the expression of a .lambda.2 transgene, J. Exp. Med. 169:1911-1929 (1989).
Ichihard et al., Organization of human immunoglobulin heavy chain diversity gene loci, The EMBO J. 7:4141-4150 (1988).
Iglesias et al., Expression of immunoglobulin delta chain causes allelic exclusion in transgenic mice, Nature 330:482-484 (1987).
James and Bell, Human monoclonal antibody production current status and future prospects, J. of Immunol. Methods 100:5-40 (1987).
Jasin and Berg, Homologous integration in mammalian cells without target gene selection, Genes & Development 2:1353-1363 (1988).
Kenny et al., Alternation of the B cell surface phenotype, immune response to phosphocholine and the B cell repertoire in M167 .alpha. plus .kappa. transgenic mice, J. of Immunol. 142:4466-4474 (1989).
Jung et al., Shutdown of class switching recombination by deletion of a switch region control element, Science 259:984-987 (1993).
Kitamura et al., A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin .mu. chain gene, Nature 350:423-426 (1991).
Koller and Smithies, Inactivating the .beta..sub.2 -microglobulin locus in mouse embryonic stem cells by homologous recombination, Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989).
Lin et al., Recombination in mouse L cells between DNA introduced into cells and homologous chromosomal sequences, Proc. Natl. Acad. Sci. USA 82:1391-1395 (1985).
Linton et al., Primary antibody-forming cells secondary B cells are generated from separate precursor cell subpopulations, Cell 59:1049-1059 (19

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Transgenic non-human animals capable of producing heterologous a does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Transgenic non-human animals capable of producing heterologous a, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transgenic non-human animals capable of producing heterologous a will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-424655

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.