Bottles and jars – Closures – Self-sealing – piercable-type closure
Reexamination Certificate
2002-01-30
2003-08-05
Garbe, Stephen P. (Department: 3727)
Bottles and jars
Closures
Self-sealing, piercable-type closure
C141S329000, C215S247000, C215S251000, C215SDIG003, C604S411000, C604S416000
Reexamination Certificate
active
06601721
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to an improved transferset for vials and other medical containers which may be attached to a conventional vial having an elastomeric stopper or other closure for transferring fluid under sterile conditions between a vial or other container and a second container such as a syringe. The collar portion of the transferset is preferably formed of a polymer which may be permanently deformed radially to secure the transferset to the container, yet sufficiently rigid to retain its shape following deformation and resist creep.
BACKGROUND OF THE INVENTION
It is conventional to store medicament such as drugs in a sealed vial or other container for later use. Such medicaments may be in a dry or powdered form to increase the shelf life of the drugs and reduce inventory space. Such dry or powdered drugs are generally stored in a sealed vial and reconstituted in liquid form for administration to a patient by adding a diluent or solvent. Alternatively, the drug may be in liquid or even gaseous form. A conventional vial for storing medicament generally includes an open end, a radial rim portion surrounding the open end and a reduced diameter neck portion adjacent the rim portion. The vial is conventionally sealed with an elastomeric stopper or closure which generally includes a generally tubular portion or annular rib inserted into the neck of the vial and a generally planar rim portion which overlies the vial rim. The stopper is normally secured to the vial with a thin malleable metal cap, such as aluminum. The aluminum cap includes a tubular portion which surrounds the rim portions of the stopper and vial, an inwardly projecting annular rim portion which overlies the rim portion of the stopper and a distal end portion which is crimped or deformed radially into the vial neck beneath the vial rim portion. Because aluminum is malleable, the collar accommodates the buildup of tolerances of the dimensions of the stopper and vial rim. The dimensions and tolerances of standard vials and stoppers are set by the International Standards Organization (ISO).
The radial portion of the aluminum cap which overlies the stopper rim portion may be closed, in which case the aluminum cap is removed by “peeling” the aluminum cap from the vial. A pre-slit tab located in the middle area is provided which overlies the vial rim, permitting the cap to be torn from the top and peeled from the vial prior to use. This embodiment of an aluminum cap has several disadvantages. First, the tearing of the metal cap creates sharp edges which may cut or damage sterile gloves and cut the person administering the drug, thereby exposing both the healthcare worker and the patient to disease and contamination of the drug. Second, the tearing of the aluminum cap generates metal particles which may also contaminate the drug. The dangers associated with the tearing of an aluminum cap has been solved in part by adding a “flip-off” plastic cap. In one such embodiment, the aluminum collar includes a central opening and a shallow plastic cup-shaped cap is received over the aluminum collar having a central projecting riveting portion which is received and secured in the central opening of the aluminum collar. The plastic cap is then removed by forcing the flip-off cap away from the aluminum collar, which tears an annular serrated portion surrounding the central opening and exposes an opening in the collar for receipt of a hypodermic needle or the like. This embodiment reduces but does not eliminate the possibility of tearing the sterile gloves of the healthcare worker. More importantly, however, aluminum dust is still created which may contaminate the medicament. It is also important to note that metallic dust is also created simply by forming and affixing the aluminum collar to the vial because aluminum dust is created in forming the aluminum collar, crimping of the collar and removal of the flip-off plastic cap. Aluminum collars have also been used to secure fluid transfersets on medicament vials. Transfersets may be utilized, for example, to transfer fluid from a syringe to a vial, such as to reconstitute a dry or powdered drug in a vial by adding a diluent or solvent. The reconstituted drug may then be withdrawn from the vial by the syringe. The inner surface of the transferset may be part of the drug fluid path and the aluminum collar or ring may bring aluminum particles in the sterile room where the drug is added to the vial or into the drug fluid path contaminating the drug. There have been attempts to reduce this problem by applying a coating to the aluminum cap or collar. Finally, the prior art also includes snap-on cup-shaped plastic caps or collars having a radially inwardly projecting end portion which is snapped over the rim portion of the vial. Snap-on plastic collars, however, do not assure adequate sealing of the vial or fully accommodate the tolerances of standard vials and stoppers as required.
The prior art also discloses plastic medicament vial transfersets. However, such plastic transfersets are relatively expensive having several interfitting parts and are difficult to use. The need therefore remains for a transferset for vials and other medical containers which may be utilized with conventional containers, such as medicament vials or cartridges, which assures sealing of the container and which achieves a good level of cleanliness, without particles or dust which may contaminate the medicament, the transferset or the clean room and which does not expose the healthcare worker to sharp metal edges. The need also remains for a transferset which may be easily secured to a vial or other medical container and which is relatively inexpensive, simple in construction and easy to use.
SUMMARY OF THE INVENTION
As set forth above, the improved transferset assembly of this invention may be utilized with conventional medicament vials and other medical containers to transfer fluids between the medical container and a second container such as a syringe. The transferset assembly of this invention eliminates the problems associated with malleable metal or aluminum collars, but accommodates the buildup of tolerances of the rim portion of the container and the elastomeric stopper. The transferset assembly of this invention is relatively simple in construction and may be formed of a malleable polymer which has sufficient rigidity to retain its shape following deformation and which is resistant to creep.
The preferred embodiment of the transferset assembly of this invention is adapted for attachment to a conventional medicament vial having an open end, a rim portion surrounding the open end and a reduced diameter neck portion adjacent the rim portion and wherein the open end of the vial is sealed with a conventional elastomeric stopper. The disclosed embodiment of the transferset assembly of this invention is also adapted for transferring fluids between a conventional syringe and a vial and may thus be utilized to reconstitute dry or powdered drugs stored in the vial by adding diluent or solvent to the vial with the syringe. As will be understood, however, the improved fluid transferset of this invention may also be used to transfer fluids between other types of containers, particularly medicament containers, and is therefore not limited in its use or application.
The transferset assembly of this invention includes an integral preferably polymeric transfer assembly including an outer tubular portion preferably having a radial end portion adapted to be connected to the vial or other container and an opposed free end, a cylindrical inner tubular portion spaced radially inwardly from, generally coaxially aligned with and preferably integrally joined to the outer tubular portion having a first end portion which is attached to the container in generally coaxial alignment with the open end of the container and adapted to sealingly engage the container having a free end. The assembly further includes a piercing member which is telescopically received in the inner tubular portion having a piercing end
Jansen Hubert
Thibault Jean-Claude
Becton Dickinson and Company
Elashway Niki M.
Fortunato David M.
Garbe Stephen P.
Scott Raymond E.
LandOfFree
Transferset for vials and other medical containers does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Transferset for vials and other medical containers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transferset for vials and other medical containers will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3102457