Transfer membrane apparatus

Liquid purification or separation – Casing divided by membrane into sections having inlet – Energy recovery from treated liquid

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

210456, 2104931, B01D 1300

Patent

active

046363106

DESCRIPTION:

BRIEF SUMMARY
The invention is concerned with apparatus for effecting transfer of heat or mass between two fluids, of which a first one may be blood, through a transfer membrane. When the first fluid is blood, the second fluid will be oxygen, in the case of a blood oxygenator; or dialysate in the case of a dialyser; or water at a suitable temperature in the case of a heat exchanger for blood.
In particular, the invention is concerned with such apparatus incorporating a number of parallel channels, each channel comprising a first conduit for the first fluid formed between two closely spaced transfer membrane sheets with the outer face of each sheet supported against a profiled plate such that second conduits for the second fluids are provided one on each side of the first conduit between a respective membrane sheet and supporting plate. The supporting plates are mounted spaced apart in a stack with the double membrane sheets between each adjacent pair of plates.
In previous commerical constructions of this kind of apparatus, an inlet manifold for the first fluid has been fitted across the full width of the front of the stack and an outlet manifold for the first fluid across the full width of the back of the stack, the first fluid flowing from the inlet manifold through the parallel first conduits, each of elongate cross-section between adjacent pairs of membrane sheets, to the outlet manifold. The first and second fluid conduits have been separated by wrapping each support plate with transfer membrane material to provide the membrane sheets one on each face of the plate and hence one in each of an adjacent pair of channels. Sealing has been achieved by tucking the ends of the double sheet into a slot in the front or rear edge of the respective plate. This provides crevices at the inlet or outlet ends of the first conduits and, when the first fluid is blood, is liable to promote stagnation of blood and potential clotting. The provision of the inlet and outlet manifolds at the front and rear respectively of the stack also makes the plumbing for the first fluid somewhat cumbersome.
I have now appreciated that these problems can be overcome in mass or heat transfer or filter apparatus if the transfer membrane sheets are provided as parts of a continuous web of transfer membrane material which is folded in concertina fashion, one set of folds each extending around the front edge of a respective plate and the other set of folds each closing a respective first conduit adjacent to the rear of the stack; each first conduit being sealed along a narrow zone extending from a point substantially halfway along the front of the stack towards, but short of, the membrane fold adjacent to the rear of the stack, whereby each first conduit is substantially U-shaped, extending from one side of the front of the stack towards and across the rear of the stack and back to the other side of the front of the stack, or W-shaped; and inlet and outlet manifolds for the first fluid being provided alongside one another across the front of the stack.
With this arrangement the essential plumbing for the first fluid can be provided at the front of the stack and the folds of transfer membrane material, extending around the front edges of the plate, provide a faired entry for the first fluid from the inlet manifold into each first conduit and a faired exit of the first fluid from each conduit into the outlet manifold. This materially reduces the stagnation problem when the first fluid is blood.
The inner surfaces of the membrane material in each first conduit may be provided with a repetitive series of hollows, such as dimples, and the first fluid may be pumped through the conduits with a pulsatile component, superimposed on the mean flow, to promote vortex mixing of the first fluid in the first conduit, as described generally in GB-A-1,442,754.
In this case, the hollows in the membrane material may be preformed, or formed in situ by expansion of the membrane material partly into corresponding profiling of the plates.
The second fluid will preferably flow i

REFERENCES:
patent: 3724673 (1973-04-01), Ryon
patent: 3907687 (1975-09-01), Hoeltzenbein
patent: 3910841 (1975-10-01), Esmond
patent: 4075091 (1978-02-01), Bellhouse
patent: 4115273 (1978-09-01), Winstead
patent: 4351797 (1982-09-01), Bellhouse et al.
patent: 4357239 (1982-11-01), Bellhouse
patent: 4383921 (1983-05-01), Bellhouse et al.
patent: 4447326 (1984-05-01), Riede et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Transfer membrane apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Transfer membrane apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transfer membrane apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2354467

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.