Data processing: speech signal processing – linguistics – language – Speech signal processing – Synthesis
Reexamination Certificate
2000-11-29
2003-12-16
To, Doris H. (Department: 2655)
Data processing: speech signal processing, linguistics, language
Speech signal processing
Synthesis
C704S271000, C704S270100, C704S002000
Reexamination Certificate
active
06665642
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a system and method for providing improved access to Internet websites for those with special needs, such as people with disabilities, children, and the computer-illiterate, in general, and, in particular, to a system and method that provides a platform which interprets and translates web pages for users with special needs, where the original web pages are not necessarily modified for users with special needs.
2. Description of the Related Art
Although the term “Internet” is properly used to describe a specific worldwide collection of networks that use IP/TCP (Internet Protocol/Transmission Control Protocol) for communication links, the term “Internet” is used in the vernacular to describe what can be accessed using a web browser, namely, web pages providing audio/visual content, Java programs, and interfaces that allow the input and output of information from a data source. In addition, most people associate e-mail systems, such as Microsoft Outlook™ or Qualcomm Eudora™, with the term “Internet”, partly because many people access their e-mail using a web browser, partly because it seems to come down the same pipeline. In the following description, the term “Web” will be used to describe these and other user-friendly functions and interfaces that are available over the Internet.
When a person accesses the Web using a web browser, she usually uses URL (Uniform Resource Locator) addresses or bookmarks, which are essentially shortcuts for URLs, in order to navigate through the Web. A URL has three parts: the protocol used by the resource (such as http), the DNS (Domain Name Service) name of the machine, or web server, where the resource is located, and the local name for the resource on the machine where the resource is located. Bookmarks simplify this process, by allowing the user to save the URL for later use, so the user will not have to input all of the characters representing the URL again. Most users see the Web as a huge collection of web pages, which are stored and maintained on web servers, and navigated by entering URLs, or selecting bookmarks, or clicking “links”, which will be discussed more fully below.
The protocol used to transfer web pages is the HyperText Transfer Protocol (HTTP), which describes the requests sent by web browsers to web servers, and the responses sent from the web servers back to the web browsers. When a user enters a URL for a web page as a destination in a web browser, the web browser sends a GET request to the appropriate web browser, which responds by sending the appropriate web page. Web pages are written in a language called HyperText Markup Language (HTML). HTML involves “hypertext”, which is much more than mere text, and provides for links to other web pages, as well as pointers to other resources. HTML is a “markup” language because it describes how documents are to be formatted. Although all web pages are written in a version of HTML (or other similar markup languages), the user never sees the HTML, but only the results of the HTML instructions. For example, the HTML in a web page may instruct the web browser to retrieve a particular photograph stored at a particular location, and show the photograph in the lower left-hand corner of the web page. The user, on the other hand, only sees the photograph in the lower left-hand corner.
In many ways, HTML is the heart of the Web, because it allows for the easy, user-friendly nature of navigation through the Web, as well as the user-friendly appearance of web pages. Many web pages have “links”, which can be in the form of text, an icon, a graphic, a photograph, etc., and, merely by clicking on the link, the user may download another web page or a resource, such as an audio file, a program, a text file, etc. In this context, the terms “click” and “double-click” signify a user pressing the button on a mouse attached to a personal computer (PC), when the cursor controlled by the mouse is over a particular area on the computer screen of the PC. A user may move from web page to web page, or resource to resource, merely by clicking particular objects on the screen, rather than entering lengthy URL addresses. In addition, as stated above, users may save particular URLs as bookmarks, for easy retrieval.
HTML also allows for the use of “forms”, which allows for the input of information on the web page, and which sends the input information to a URL indicated by the HTML. In addition, the Common Gateway Interface (CGI) provides a standard for an interface between a database and the Web. There is a script, or program, that provides the parameters and methods of the interface. The location of this script is indicated by a URL, and is referred to by the HTML of the web page. Thus, the input information of a form is often sent to the URL of a CGI script, which then interfaces with a database.
The interactivity of web pages is further increased by the use of Java™ applets, which are referred to within an HTML page by the URL where they are located. Unlike CGI scripts, which are kept and run at the web server end, applets are downloaded from the web server to the web browser, where they are run. Further unlike CGI scripts, applets are fully functional mini-programs, which may be used to embody a game, a complex form that changes depending upon input (such as a spreadsheet which shows totals in real-time), or active multimedia. Animation and sound may be embedded in a web page using an applet, without the need of spawning an external multimedia viewer. In addition, because it is run locally, in the user's web browser, an interactive applet is much faster than downloading responses over the Web.
However, the advantages and interactivity of HTML web pages, which use CGI scripts and Java™ applets, may be lost on users with special needs. Users with special needs include the blind or vision-impaired, the deaf or hearing-impaired, the dyslexic, and the computer illiterate. For these users, the Web is neither easy nor user-friendly.
For the blind, the problems with a system which is mostly based on visual cues are obvious. Even the simplest component of a web page, the text, can not be apprehended by the blind. To a greater extent, the links, graphics, and interactive modules are not user-friendly for the blind. All of this information could be stored in the form of audio files, or be translated in real time by a text-to-speech synthesizer. However, if audio files comprising the information are stored and transported from the web page, the web server would need to store a large amount of additional material and the operator of the website would need to create a large amount of additional material. If a text-to-speech synthesizer is used, the information contained and related by the spatial relationship between text and other objects on the website would be lost. In addition, loss of these spatial relations may make the resulting audio incomprehensible or difficult to understand or follow.
For the deaf or hearing-impaired, the audio cues that are a part of many websites have no effect. On may web pages, audio material is used to indicate activity, such as computer processing or searching, and problems, such as a lost connection. Furthermore, audio material is part of many multimedia presentations, and may include vital information for understanding or appreciating the presentation. One solution would be to have a live interpreter, either present in the room or connected over a network, who would give the deaf or hearing-impaired user through the audio material. Another solution would be to have an Automatic Speech Recognition (ASR) program in the web browser, but this would only be effective for human speech, and not for audio cues or material such as music.
For people who have problems reading, such as the dyslexic or the elderly with poor eyesight, the Web can be difficult to understand and follow. The text on web pages may be too small to read, or the spatial relations between objects on the screen may cause confusion. One solutio
Kanevsky Dimitri
Zlatsin Alexander
Dilworth & Barrese LLP
IBM Corporation
Nolan Daniel A.
To Doris H.
LandOfFree
Transcoding system and method for improved access by users... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Transcoding system and method for improved access by users..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transcoding system and method for improved access by users... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3177422