Planetary gear transmission systems or components – Differential planetary gearing – Bevel gear differential
Reexamination Certificate
2002-01-04
2003-07-29
Wright, Dirk (Department: 3681)
Planetary gear transmission systems or components
Differential planetary gearing
Bevel gear differential
Reexamination Certificate
active
06599218
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates generally to axle drives for motor vehicles and, more particularly, to a transaxle drive differential assembly.
As is known, the use of a differential assembly in the transmission system of a motor vehicle allows the wheels to spin at different speeds. In the case of a vehicle traveling in a straight line, the axle shafts connected to the differential assembly will rotate at the same speed. However, when a turn or curve is encountered, the axle shaft nearest the inside of the turn will slow in rotational speed while the outer axle shaft will simultaneously increase in rotational speed. As such, the wheels, driven by the axle shafts, are prevented from scuffing the surface across which they travel.
An example of a transaxle drive differential assembly for motor vehicles may be seen in U.S. Pat. No. 4,232,569, issued on Nov. 11, 1980. In the differential assembly disclosed in the '569 patent, the ring gear which carries the differential gearing is configured with a reduced outer diameter adjacent to the gear teeth. This diameter forms a stepped surface which is placed in contact with a mating surface formed in the housing which acts as a plain bearing surface for the differential assembly. The principal advantage of this configuration is the compact configuration provided to the differential assembly and the use of the housing to take up the gear separating forces instead of the axle shafts.
While the differential assembly disclosed in the '569 patent works well for its intended purposes, this configuration does suffer disadvantages. In particular, the fabrication of the ring gear is relatively expensive in that the step adjacent to the gear teeth requires a larger part size which is costlier when compared to comparable strength differential ring gears. The cost is attributable to the additional material, the requirements of handling a larger part, and the larger manufacturing machine size required. Even in a configuration where the part can be potentially formed in a net shape via sintered powder metal, the stepped gear configuration is not desirable due to stresses caused at the transition between the larger and smaller diameters and due to variations in the densities of the sintered metal.
Additionally, in the '569 patent, the differential configuration disclosed is used in a housing with a horizontal split line. This split line configuration requires relatively high tolerances between upper and lower housing sections to reduce discontinuities at the split line. Any such discontinuities between the upper and lower housing sections create a step that can cause uneven loading of forces between the housing sections as well as binding of the differential and increased noise.
A further differential assembly design is disclosed in U.S. Pat. No. 4,480,501 issued on Nov. 6, 1984. In the configuration disclosed in the '501 patent the tips of the gear teeth of the ring gear are used as a plain bearing surface in contact with a bearing shoe that forms a mating plain bearing surface. This arrangement eliminates the problems caused by discontinuities between housing halves and allows the use of a narrower ring gear since the need for a step is eliminated. However, this arrangement suffers the disadvantage of requiring the gear teeth to be used as plain bearings which causes additional wear of the gear teeth and the potential for greater than usual contamination of the gear box assembly. A further disadvantage is the requirement of fabricating and retaining the bearing shoe and the associated additional cost and complexity of manufacture. Yet another disadvantage associated with both the '569 and '501 patents is the need to configure the ring gear to carry the bevel gears, or to increase the size of the bevel gears in order to match the internal diameter of the ring gear. As such, the gear sizes are optimized not for transmitted torque but for the space required to fit the bevel gears.
From the foregoing, it is clear that there is a unfulfilled need in the art for an improved transaxle drive differential assembly which is free of the disadvantages above-described. Accordingly, it is an object of the present invention to provide a transaxle drive differential assembly having improved cooperable bearing surfaces whereby the need to provide a bearing shoe or ring gear with a stepped surface is eliminated. It is a further object of the present invention to provide a differential assembly having a reduced number of fasteners thereby making the differential assembly easier to manufacture.
SUMMARY OF THE INVENTION
In accordance with the present invention, a transaxle drive differential assembly powered by an input drive and connected to a pair of axle shafts is provided. The differential assembly includes a housing comprised of a first housing section and a second housing section wherein at least one of the housing sections has a bearing surface. A ring gear, drivingly linked to the input drive, has an inner circumference which is supported on the bearing surface. A differential is drivingly linked to the ring gear and is adapted to drive the pair of axle shafts.
More specifically, the present invention is directed to a hydrostatic transaxle powered by an input drive and connected to a pair of wheels. The transaxle includes a housing comprised of a first housing section and a second housing section wherein at least one of the housing sections has a bearing surface. A hydrostatic transmission is mounted within the housing and has a center section on which is mounted a hydraulic pump and a hydraulic motor. The hydraulic pump is drivingly engaged to the input drive and linked to the hydraulic motor. A ring gear is drivingly linked to the hydraulic motor and has an inner circumference which is supported on the bearing surface. A pair of axle shafts are supported by the housing on which the wheels are mounted and a differential, drivingly linked to the ring gear, is adapted to drive the pair of axle shafts and, accordingly, the wheels.
A better understanding of the objects, advantages, features, properties and relationships of the invention will be obtained from the following detailed description and accompanying drawings which set forth an illustrative embodiment and is indicative of the various ways in which the principles of the invention may be employed.
REFERENCES:
patent: 4182201 (1980-01-01), Mayhew et al.
patent: 4244241 (1981-01-01), Treadwell
patent: 4480500 (1984-11-01), Yamamori et al.
patent: 4480501 (1984-11-01), von Kaler
patent: 4781259 (1988-11-01), Yamaoka et al.
patent: 4867008 (1989-09-01), Yamaoka et al.
patent: 4907470 (1990-03-01), Kasemeier et al.
patent: 4979582 (1990-12-01), Forster
patent: 5330394 (1994-07-01), Hauser
patent: 5404772 (1995-04-01), Jester
patent: 5528958 (1996-06-01), Hauser
patent: 5555727 (1996-09-01), Hauser et al.
patent: 5557931 (1996-09-01), Hauser et al.
patent: 5628189 (1997-05-01), Hauser et al.
patent: 5664465 (1997-09-01), Okada et al.
patent: 5807200 (1998-09-01), Hauser
patent: 5819535 (1998-10-01), Smothers et al.
patent: 5863271 (1999-01-01), Schreier et al.
patent: 6015362 (2000-01-01), Irikura et al.
patent: 6024665 (2000-02-01), Hauser
patent: 6056663 (2000-05-01), Fett
patent: 6135911 (2000-10-01), Hauser
patent: 6338690 (2002-01-01), Hauser
LandOfFree
Transaxle drive differential assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Transaxle drive differential assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transaxle drive differential assembly will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3108841