Transactions and business processes executed through...

Communications: directive radio wave systems and devices (e.g. – Directive – Position indicating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C235S385000, C342S463000, C705S028000

Reexamination Certificate

active

06577275

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates in general to the application to a variety of transaction and business processes of the communication mechanism and geolocation functionality employed in a radio-tagged object location and tracking system of the type described in the U.S. Patents to Belcher et al, U.S. Pat. Nos. 5,920,287 and 5,995,046, (hereinafter referred to as the '287 and '046 patents, respectively), assigned to the assignee of the present application and the disclosures of which are incorporated herein.
The invention is particularly directed to the use of the spread spectrum communication and geolocation functionality of the patented system to both convey information associated with a transaction of a tagged object and to allow the site of the object conducting the transaction to be geolocated. This dual functionality allows an ancillary transaction controller to interactively focus or target one or more additional transactions with respect to the tagged object, which may be an individual, such as a customer, patient, client, or the like of an institution (e.g., retailer, hospital, etc.) in which the geolocation system is installed.
BACKGROUND OF THE INVENTION
The general architecture of the radio tagged object geolocation systems described in the above-referenced '287 and '046 Patents is diagrammatically shown in
FIG. 1
as comprising a plurality of tag emission readers
10
that are installed at precisely geographically known and relatively unobtrusive locations in and/or around the perimeter of an asset management environment
12
. The asset management environment contains a plurality of objects/assets
14
, to which radio-containing ‘tags’
16
are affixed.
As a result of radio emissions from the tags
16
, the locations of the objects
14
can be monitored on what is effectively a continuous basis by the readers
10
and reported to an asset management database
20
. This database may be accessed by way of a digital computer workstation or personal computer
26
. Advantageously, the tag-to-system infrastructure communication reliability of the geolocation system of the '287 and '640 patents is inherently very high, as the readers are spatially distributed to ensure that a transmission from any tag will always be received by at least three and preferably four readers.
In order that the system may locate and track the objects, the system employs a spread spectrum wireless communication infrastructure between the tags and the readers. In this communication infrastructure, each radio tag
16
is operative to repeatedly transmit or ‘blink’ a short duration, wideband (spread spectrum) pulse of RF energy. This RF pulse is encoded with the identification of its associated object and ancillary information stored in a tag memory.
These short duration spread spectrum emissions from a tag are detected by the tag emission readers
10
, outputs of which are coupled to an associated reader output processor of an RF processing system
24
. This processor correlates the spread spectrum signals received from a tag with a set of spread spectrum reference signal patterns, in order to determine which spread spectrum signals received by the reader is a first-to-arrive spread spectrum signal burst transmitted from a tag. The first-to-arrive signals are then coupled to an object geolocation processor, which performs time-of-arrival differentiation of the detected first-to-arrive transmissions, to geolocate (within a prescribed spatial resolution, e.g., on the order of ten feet) the tagged object of interest.
SUMMARY OF THE INVENTION
As pointed out above, and as described in detail in the '046 and '287 applications, whenever a tag blinks, it transmits a burst of spread spectrum RF energy that is encoded with the identification of the tagged object and also ancillary information stored in a tag memory. The tag memory may also store parameter data provided by an auxiliary device, such as a transducer or sensor associated with the object of interest (for example a temperature sensor coupled directly to the tag), or it may receive data downloaded to the tag from another device, such as a wireless interrogating unit. This ability of the tag to incorporate auxiliary information into the tag's wireless communication (spread spectrum RF burst) to the geolocation infrastructure makes the patented geolocation system a very powerful tool for augmenting and customizing a variety of business transactions and processes.
Pursuant to a first embodiment, a geolocation radio tag-based communication link is established between the geolocation system and an ancillary (portable) computing device. The computing device is interfaced as an auxiliary input to the radio tag, so as to enable the spread spectrum transmission mechanism of the tag radio to be used to transmit transaction data associated with the operation of the computing device to the geolocation infrastructure, as well as geolocating the tag (and thereby the computing device).
In accordance with a second embodiment, the scanning of barcode information is combined with the real-time location functionality of the geolocation system. This is very practical for inventory, as it enables the identity of an item to be coupled with its location. The barcode information is coupled as an auxiliary data input to the geolocation systems radio tag for storage in tag memory, while operation of the barcode scanning device may be an auxiliary trigger input to the transmitter circuitry of the radio tag. This allows scanned barcode information to be wirelessly conveyed to the user's information system, together with the location of the scan event as determined by the geolocation system, as the time of the occurrence of the scan event.
A third embodiment combines the identification and operation of a digital camera with the real-time location functionality of the geolocation system. The identification of the digital camera is stored in the tag memory, while the image capture operation of the camera (photo number) is auxiliary data to the tag memory. Activation of the camera is supplied as a transmission activation input to the tag radio. As a consequence, at the taking of the “snapshot”, the geolocation tag-augmented digital camera causes the transmission of a camera identification signal to the readers of the geolocation system. This enables the location of the camera to be correlated with its captured image to be readily identified at the time of the photograph is taken.
In a fourth embodiment, a geolocation radio tag is worn by an individual within a ‘sectorized’ paging system environment, comprised of a plurality of addressable paging cells each of which contains one or more paging speaker units. In this embodiment, the ability of the associated geolocation system to locate the person to be paged allows a paging system operator to deliver a page from only that particular cell in which the person is located. This not only reduces technical difficulties in executing the page, but reduces the range requirements and paging load.
A fifth embodiment has the geolocation system installed in a retail establishment equipped with one or more electronic messaging units distributed throughout the store for advertising, emergency information, etc. Upon entering the store, the customer is issued a ‘tracking’ tag, memory of which has been loaded with customer identification information. This allows the store's geolocation system to track the customer, and provides a key to a customer associated database. Using this database, and knowledge of the customer's whereabouts, the electronic messaging subsystem may be used to issue customer-specific advertising messages, when the customer enters a specific area containing products for which the database indicates a customer interest or preference.
In a sixth embodiment, a customer with a shopping cart is provided with a portable scanning device equipped with a geolocation radio tag that allows a shopper to scan an item and wirelessly execute a sales transactio

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Transactions and business processes executed through... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Transactions and business processes executed through..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transactions and business processes executed through... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3089708

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.