Trans-modal animated information processing with selective...

Electrical computers and digital processing systems: multicomput – Remote data accessing – Using interconnected networks

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S217000, C709S224000, C340S870030, C340S870030

Reexamination Certificate

active

06292828

ABSTRACT:

BACKGROUND—FIELD OF THE INVENTION
This invention relates to monitored or monitoring circuits or networks comprising electronic communication or transfer components, specifically to user-friendly methodology for enhanced securitization, collection, processing, and/or distribution.
Background—Description of Prior Art
Surely tens of thousands of patents have been issued in the past 100-120 years in the telephony, radio, microwave, computer, cable, television, and electrical classifications. In recent years improvements have been made to telephony by the utilization of computer technology and the introduction of digital transmission, which is rapidly replacing analog transmission. Call waiting, call return, call forwarding, call blocking, and conference calling are but a few enhancements brought forth with the development of digital processing. These improvements, although laudable in their own right, fail to address the problems inherent in, say, running a household or a small business. More succintly, although considerable gains have been made in the respective and disparate fields of endeavor, very little has been done to enrich the American standard of living through notable advancement of communications fluency or safety standards.
In March, 1993 the American computer industry was still in the doldrums. In 1992, IBM had asked the federal government to intercede with financial aid. The telephone industry and Wall Street were getting ready for a slow summer in an aging bull market. The telephone industry was developing their land-line communication capabilities to include video transmission. The cable industry was preparing to be de-regulated, and busy with the development of two-way cable communication to compete directly with the phone companies. The Federal Communications Commission had announced that certain bands of the radio spectrum would be opened up for commercial use. Even electric utility providers were experimenting with the use of copper and alloy cables to eventually provide “spread-spectrum” signal communication capability through their systems. The respective players in this new and increasingly diverse communications arena were scrambling to develop their own products and services, wondering who would be the winners and losers on this new and crowded playing field. American Telephone and Telegraph's new Videophone and the EO Personal Digital Assistant had yet to reach the market. Apple's Newton Personal Digital Assistant was yet further away on the horizon. I felt that these tools had all somehow missed the mark. When the World Trade Center was bombed, I sensed an urgency to resolve some of our communication and security system shortcomings.
Over the past five years, I had begun to appreciate the advantage and possibilities of the computer and telephone in the operation of a service-based business. I found call forwarding to be a useful tool in automatically forwarding calls from my home phone through a cellular phone as early as 1988. I later surmised that a beeper could be useful for remote notification of events through graphical display. It followed that a computer or network could gather any form of data at one or more locations and notify users or devices at remote locations for selective interactions. The remote devices could include multiple communications media for flexibility and continuity of system access. Such a device would have to be user-friendly, however, in terms of size and manageability. A smaller yet more versatile “smart” device would be more functional, with provision for a basic communication media, say radio or microwave, to and from a home, office, mobile, etc., central processing unit(s) or network device(s). The fixed or mobile local enhancement network could automatically retrieve, record, manipulate, manage, or dispatch communications to and from any authorized on-site or off-site device. It followed that, with the advances in the development of High-Definition Television, as well as two-way digital transmission via cable, that the television would prove to be an important multi-media device when used in conjunction with more diverse communications media. This central processing unit/multi-media information reception and broadcasting center could automatically notify other on-site or off-site components of historic, ongoing, or proposed interactions. An internal database could be constructed for cognitive analysis of events and patterns, with automated formulation of remedial programs and interactions as warranted by parameters and inputs. Computer analysis and qualification of incoming or ongoing routines, conditions, or interactions could trigger further input requests to and from users and devices according to priority schedules and interactions and events. Continuous, interval, or events-driven diagnostic routines or queries could help insure safety of the users and components in the system, as well as assisting with selective cognitive and formulative modes of interactive switching. Securitization features such as coding, nuances, or interrogatory routines, and intelligent management, could be used to safeguard system integrity and users.
Such a system could be used for security, quality control, systems control, inventory control, automated communications reception, automated research, automated production, traffic management, personnel efficiency, patient critical care monitoring, civil defense, etc. The list of possible applications seemed endless. It was obvious, however, that the influx of data could easily overwhelm the user with a deluge of data at less opportune moments. The volume of data, as well, could overwhelm the efficiency of the system. A system was needed which could dispense much of its own prioritizing and judgment-making. Of equal importance was the necessity for a human-assisted means of quickly, deftly, discreetly, and judiciously delegating responsibility for incoming calls between the network components and the user. Anyone who has attempted to manipulate multiple incoming calls on a car phone in traffic during rush hour knows the awkward insidious nature of this situation. Anyone who has received a call during an important business meeting will attest to the intrusion factor. Anyone who has owned a portable phone or a beeper for any length of time knows there are times when the incessant drubbing of the senses can bring back fond memories of days without such modern appurtenances.
I had often wondered how delegation of authority for panning sequences was managed by camera crews filming sporting events. I learned that switching of remote cameras was accomodated by a crew viewing multiple monitors located in an on-site truck or trailer. It seemed to me that if each remote camera were equipped with a switching apparatus, communication of a “virtual dialogue” could be accomplished with a single or appropriately configured array of buttons, or “triggers”, and a minimum of distraction to the user. Requests for live camera time could be polled from the individual cameras to one or more central processing units, which are equipped with compatible version(s) of the “triggers” array comprising manual, voice, or software configurations. A human supervisor could be equipped with a “remote”, or hand-held device containing the “triggers” apparatus, for advanced intercessory empowerment. The system could thus manage much of its own switching based on parameters and inputs, including polled requests for camera time. Over time such a system could develop a database for critical overview of the system, devices, or users, and make adjustments, suggestions, or requests as necessary. Nascent authority for ongoing or impending routines could be delegated as necessary, between the system and the user or supervisor, dictated by availability or applicability of each. Advanced diagnostic, security, or transfer modes could typically be managed by either or both the user and the system, with welfare and authority of human components typically designated as first priority, where applicable. This system could also be use

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Trans-modal animated information processing with selective... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Trans-modal animated information processing with selective..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Trans-modal animated information processing with selective... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2446865

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.