Traffic track measurements for analysis of network troubles

Telephonic communications – Diagnostic testing – malfunction indication – or electrical... – Testing of subscriber loop or terminal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S112030, C379S114030, C379S133000, C379S116000

Reexamination Certificate

active

06411681

ABSTRACT:

TECHNICAL FIELD
The present invention relates to methods and systems for accumulating call specific data for network communication traffic, including release cause information, and analyzing network troubles as well as traffic patterns encountering troubles, based on the call data.
ACRONYMS
The written description uses a large number of acronyms to refer to various services, messages and system components. Although generally known, use of several of these acronyms is not strictly standardized in the art. For purposes of this discussion, acronyms therefore will be defined as follows:
Automatic Message Accounting (AMA)
Address Complete Message (ACM)
ANswer Message (ANM)
Call Detail Record (CDP)
Carrier Identification Code (CIC)
Centi-Call Seconds (CCS)
Central Office (CO)
Competitive Local Exchange Carrier (CLEC)
Common Channel Interoffice Signaling (CCIS)
Common Language Location Identifier (CLLI)
Customer Record Information System (CRIS)
Destination Point Code (DPC)
End Office (EO)
Engineering and Administrative Data Acquisition
System (EADAS)
Global Title Translation (GTT)
IDentification (ID)
Initial Address Message (IAM)
Interexchange Carrier (IXC)
Integrated Services Digital Network (ISDN)
Internet Service Provider (ISP)
ISDN User Part (ISDN-UP or ISUP)
Landing Zone (LZ)
Line Identification Database (LIDB)
Local Area Network (LAN)
Local Exchange Carrier (LEC)
Loop Maintenance Operations Systems (LMOS)
Message Signaling Unit (MSU)
Message Transfer Part (MTP)
Minutes Of Use (MOU)
Multi-Dimensional DataBase (MDDB)
Number-Plan-Area (NPA)
On-Line Analytical Processing (OLAP)
Operations, Maintenance, Application Part (OMAP)
Origination Point Code (OPC)
Personal Computer (PC)
Plain Old Telephone Service (POTS)
Public Switching Telephone Network (PSTN)
ReLease Complete (RLC) message
RELease (REL) message
Service Switching Point (SSP)
Signaling Link selection Code (SLC)
Signaling System
7
(SS7)
Signaling Point (SP)
Signaling Transfer Point (STP)
SubSystem Number (SSN)
SUSpend (SUS) message
Structured Query Language (SQL)
Transaction Capabilities Applications Part (TCAP)
Wide Area Network (WAN)
BACKGROUND ART
An essential problem in optimizing a telecommunications network is balancing equipment and trunking against service, maintenance and cost. Network design involves predicting future demand based on past results, evaluating the capacity of equipment and facilities, and providing the correct amount of capacity in the proper configuration, in time to meet service objectives. Effective operation of a network involves recognizing troubles and congestion and implementing corrective measures. Virtually every element of a telecommunications system is subject to failure or overload. Effective testing, monitoring, control, and maintenance therefore is essential to obtain and maintain acceptable levels of performance and customer satisfaction.
Rapid changes and increases in demand for telecommunication services increase the pressures for cost effective engineering, maintenance and upgrading of the telephone network. Two examples of recent concern to local exchange carriers (LECs) relate to Internet access traffic and traffic to and from competitive local exchange carriers now commonly referred to as “CLECs.”
The sudden increase in popularity of access to the Internet, for example, has radically changed the loading placed on the telephone network. Normal voice telephone calls tend to occur at random times, and the network typically routes the majority of such calls to random destinations. Also, the average hold times for such calls tend to be short, e.g. three minutes. By contrast Internet traffic tends to have severe peak traffic times during any given twenty-four hour period, e.g. from 8:00PM to 11:00PM. Also, the network must route Internet access calls to a very small number of destinations, i.e. to the lines for modem pools operated by Internet Service Providers (ISPs). Instead of many parties calling each other randomly, many callers are all calling in at about the same time to a limited number of service providers. Finally, hold times for Internet calls can last for hours. Some Internet users access the Internet when they sit down at the desk and leave the call connection up until they decide to turn their computers off, e.g. at the end of their day. If they leave their computers on all the time, the connections to the ISPs may stay up for days. These lnternet traffic patterns add incredibly heavy traffic loads to the telephone network and tend to concentrate those loads in specific offices providing service to the ISPs.
To meet the new demands relating to traffic to and from a competitive local exchange carrier (CLEC), the LEC must provide tandem capacity and trunking to the CLEC exchanges. The CLECs demand that the LEC provide sufficient capacity to minimize blockages on calls to and from the CLEC networks. Disputes also arise over the amount and direction of such traffic, for example, as it relates to billing and compensation issues.
Adding end offices, specialized switching modules, trunks, tandem offices and the like to meet new demands such as those of Internet access and CLEC interconnection requires considerable expense. Accurate engineering, to minimize cost and yet provide effective service to the various customers, becomes ever more essential. To provide effective engineering, it is necessary that the LEC understand the traffic involved. Such understanding requires accurate and complete traffic measurement.
In particular, it is necessary that the LEC recognize causes of network troubles interfering with large volumes of traffic. For example, if a CLEC or ISP complains of blockages, and the blockages are due to overloading of the LEC equipment servicing the CLEC or ISP, then the LEC must design and deploy an upgrade of the LEC network specifically engineered to eliminate the cause of the blockages. If the LEC equipment was not in fact the cause of the blockages, e.g. if the ISP did not subscribe to enough lines and deploy enough modems, then any upgrade deployed by the LEC would actually be a waste of considerable time, effort and expense.
Existing operations and maintenance systems concentrate on responding to specifically reported troubles relating to individual lines or network elements. For example, U.S. Pat. No. 5,687,212 to Kinser et al. discloses a reactive maintenance system that analyzes the working status of customer network facilities in response to a customer request reporting a customer trouble. An attendant station receives the trouble report from the customer, and a test system initiates testing of the line associated with the trouble report. The reactive maintenance system also includes a work request processing and dispatch system, for dispatching field technicians to resolve identified circuit problems. While such a system is effective in resolving specifically reported line troubles, this system does not provide any overall picture of the traffic and congestion related troubles, such as reasons for high numbers of blockages on calls to a particular customer.
Attempts to use traditional approaches, such as the accumulation of data from the switches themselves and the Engineering and Administrative Data Acquisition System (EADAS), fell short of providing the desired information.
For example, one approach to a traffic analysis is to study usage in an office by setting up a “busy study” with respect to specific individual lines served through that office. However, it is not possible to look at all the traffic in the office at one time. Typically, the LEC can study maybe three different lines at a time. So in a 50,000-line office the LEC engineers can examine the traffic for up to three hundred lines at one time. Also, setting up and maintaining such studies are labor intensive. To conduct a meaningful number of busy studies throughout a large service area, a LEC virtually needs an army of clerical people whose main job function is setting up busy studies. Once set up, such a busy study may run for three weeks, but at the end of that time, it takes another t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Traffic track measurements for analysis of network troubles does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Traffic track measurements for analysis of network troubles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Traffic track measurements for analysis of network troubles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2963523

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.