Traffic safety prediction model

Data processing: measuring – calibrating – or testing – Measurement system – Statistical measurement

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S907000

Reexamination Certificate

active

06662141

ABSTRACT:

I. BACKGROUND OF THE INVENTION
A. Field of the Invention
The present invention relates to the formulation of mathematical annual accidental and severity prediction models for a variety of applications where conflicts are generated as with human conflict, environmental (possibly weather) conflicts and more specifically in this application with vehicle conflicts for highway intersections and roadway segments, and to the statistical format for each of the submodels which estimate annual angle probable conflict opportunities, annual rear-end probable conflict opportunities, annual side-swipe probable conflict opportunities, and annual fixed object (single vehicle) probable conflict opportunities, and their formulation into a further statistical format which summarizes all of the conflict opportunities into an annual quantity of total probable conflict opportunities which are speed weighted, and using a stable mathematical relationship between speed weighted annual total conflict opportunities and annual accidents, both accurately and with relative precision estimates future annual accidents at any typical highway intersection under any typical traffic volumes, any typical combination of horizontal geometry and lane or bay traffic assignments, and any typical traffic control device including “No” control (driveway), “Yield” control, two-way “Stop” control, four-way “Stop” control, or signalized traffic control. Using the annual accident estimate for an individual intersection and prior research of the relationship between speed and annual accidents, and fatality or injury involvement, an estimate of future annual fatality and personal injury involvement is also developed which, along with annual accident quantity, can be compared to prior research of the quantity levels associated with acceptable/unacceptable hazard quantity levels for each type of traffic control, and also compared with a quality level associated with an acceptable/unacceptable hazard level for annual personal injury and fatality severities to determine whether the existing and/or a proposed future intersection is or will become hazardous (or incrementally hazardous) by either an inordinate quantity of annual accident occurrences or an inordinate quality (severity) of annual personal involvements. In addition, by summing the estimated annual personal injury and fatality involvement over multiple intersections comprising a highway route and based on the prior researched relationship of route Safety Levels of Service (hazard levels), an entire existing or proposed future highway route can be assessed as either hazardous or non-hazardous (or incrementally hazardous) thereby permitting an entire highway route (as well as any involved intersections) to be examined and/or redesigned to provide acceptable hazard levels. Together with proper engineering judgment, both future highway intersections and routes may be designed interactively by balancing traffic volumes, geometries, and traffic control types against hazard levels to maximize future intersection and highway route safety performance.
Application of the concepts and statistical formulations of this invention are not intended to be restricted to only highway or transportation purposes but may be applicable to other fields of probable event and conflict relationships.
B. Description of the Prior Art
Historically in the transportation field, the only mathematical tools to predict annual accidents have been exposure (rate) based models such as accidents per million entering vehicles for intersections and annual accidents per million vehicle miles of travel for open roadway routes. One attempt to quantify the safety relationship of highway routes using the latter model was published by Jason Yu in October 1972 entitled
Establishing Relationship of Level of Service and Highway Safety.
But neither of these methods are sensitive to the myriad of complexities which affect accident occurrence including the quantity of traffic volumes and their peaking characteristics throughout the day, week and year; the character of the horizontal geometry including the presence of left and/or right turn bays, turning radii, acceleration/deceleration lanes, and median separation from opposing traffic; or the type of traffic controls including no control, yield, two-way stop, all-way stop, or signalized control including the intricate nuances of traffic signal phasing and timings, or the combined effects of roadway and intersection capacity which promote or reduce accidents. In Access Management (designing the spacing of access openings as affected by the character of each access), the problem of reasonably predicting accident expectancies becomes even more complex than the open roadway because of the differences from one access opening to the next given their relative proximity, where the resultant accident expectancies varies depending on the traffic volumes at each independently operating access opening.
Relative precision in the modeling of transportation events has been used many times as an alternative prediction methodology. Probably one of the best known such models is the relative precision model developed by Webster to predict delay at signalized intersections. In Webster's original model, two distinct types of delay were mathematically hypothesized including 1) Uniform delay and 2) Incremental or random delay. Today, delay models very similar to Webster's are regarded as the backbone of the Signalized Intersection Chapter of the Highway Capacity Manual (HCM) of the Transportation Research Board. And from these mathematical delay models, Delay-based Levels of Service (LOS) for intersection design and control are used as standard features of both transportation planning and design professions, and for the development of Growth Management in urban areas such as with Florida's Growth Management Laws. Yet the basic premise for the management of growth and for the design and planning of signalized intersections still rests upon mathematical models which are only relative, and not exact. After all, it is highly unlikely that any one intersection would produce delay results which replicate exactly the delay which the Highway Capacity Manual or Webster's models predict. From this, it may be seen that the prediction of many values in transportation, whether delay, volumes, or accidents does not rest upon the need for absolute accuracy (because absolute values will always be masked by human, vehicle or environmental factors), but upon the need for realistic accuracy with relative and stable precision.
Several other automobile accident prediction models have been developed in the past, but each of these have focused on the prediction of damage from an accident or with warning a driver of an impending accident location ahead based upon existing accident history with no prediction of future accident history.
U.S. Pat. No. 5,270,708 issued to Kamishima on Dec. 14, 1993, discloses one such model including a position and orientation sensor which forecasts the possibility of occurrence of an accident based on pre-existing accident histories and reiterates throughout that “past traffic accident data” is stored, extracted and used to discriminate the potential for accidents ahead based on vehicle proximity to an individual accident location, but this model has no capability for forecasting future accidents based on volume, geometric or traffic control changes to the road ahead. U.S. Pat. No. 5,251,161 issued to Gioutsos et al. on Oct. 5, 1993 discloses a method of modeling a vehicle crash wave form to test a crash detection system. U.S.S.R. Patent Document No. 658,575, published on Apr. 30, 1979 to Spichek et al., shows a transport vehicle electronic impact modeling unit for modeling unsurmountable and surmountable obstacles.
U.S. Pat. No. 4,179,739, issued Dec. 18, 1979 to Virnot, discloses a system providing a memory controlled railroad traffic management process. This method regulates the traffic over a network of itineraries travelled by various vehicles such as railroad

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Traffic safety prediction model does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Traffic safety prediction model, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Traffic safety prediction model will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3171250

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.