Traffic monitoring tool for bandwidth management

Electrical computers and digital processing systems: multicomput – Computer network managing – Computer network monitoring

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S226000, C345S215000, C345S215000

Reexamination Certificate

active

06578077

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to communication or telecommunication. More particularly, the present invention provides a technique, including a method and system, for monitoring and allocating bandwidth on a telecommunication network at, for example, a firewall access point. As merely an example, the present invention is implemented on a wide area network of computers or workstations such as the Internet. But it would be recognized that the present invention has a much broader range of applicability including local area networks, a combination of wide and local area networks, and the like.
Telecommunication techniques have been around for numerous years. In the early days, people such as the American Indians communicated to each other over long distances using “smoke signals”. Smoke signals were generally used to transfer visual information from one geographical location to be observed at another geographical location. Since smoke signals could only be seen over a limited range of geographical distances, they were soon replaced by a communication technique known as telegraph. Telegraph generally transferred information from one geographical location to another geographical location using electrical signals in the form of “dots” and “dashes” over transmission lines. An example of commonly used electrical signals is Morse code. Telegraph has been, for the most part, replaced by telephone. The telephone was invented by Alexander Graham Bell in the 1800s to transmit and send voice information using electrical analog signals over a telephone line, or more commonly a single twisted pair copper line. Most industrialized countries today rely heavily upon telephone to facilitate communication between businesses and people, in general.
In the 1990s, another significant development in the telecommunication industry occurred. People began communicating to each other by way of computers, which are coupled to the telephone lines or telephone network. These computers or workstations coupled to each other can transmit many types of information from one geographical location to another geographical location. This information can be in the form of voice, video, and data, which have been commonly termed as “multimedia.” Information transmitted over the Internet or Internet “traffic” has increased dramatically in recent years. In fact, the increased traffic has caused congestion, which leads to problems in responsiveness and throughput. This congestion is similar to the congestion of automobiles on a freeway, such as those in Silicon Valley from the recent “boom” in high technology companies, including companies specializing in telecommunication. As a result, individual users, businesses, and others have been spending more time waiting for information, and less time on productive activities. For example, a typical user of the Internet may spend a great deal of time attempting to view selected sites, which are commonly referred to as “Websites,” on the Internet. Additionally, information being sent from one site to another through electronic mail, which is termed “e-mail,” may not reach its destination in a timely or adequate manner. In effect, quality of service or Quality of Service (“QoS”) of the Internet has decreased to the point where some messages are being read at some time significantly beyond the time the messages were sent.
Quality of Service is often measured by responsiveness, including the amount of time spent waiting for images, texts, and other data to be transferred, and by throughput of data across the Internet, and the like. Other aspects may be application specific, for example, jitter, quality of playback, quality of data transferred across the Internet, and the like. Three main sources of data latency include: the lack of bandwidth at the user (or receiving) end, the general congestion of Internet, and the lack of bandwidth at the source (or sending) end.
A solution to decreasing data latency includes increasing the bandwidth of the user. This is typically accomplished by upgrading the network link, for example by upgrading a modem or network connection. For example, the network link may be upgraded to X2 modems, 56K modems, ADSL or DMT modems, ISDN service and modems, cable TV service and modems, and the like. Drawbacks to these solutions include that they typically require additional network service; they also require additional hardware and/or software, and further they require both the sender and receiver to both agree on using the same hardware and/or software. Although one user may have a much faster line or faster modem, another user may still rely on the same 1,200 kb modem. So, the speed at which information moves from one location to another location is often determined by the slowest information, which is being transferred over the network. Accordingly, users of faster technology are basically going nowhere, or “running” nowhere fast, as is commonly stated in the network industry.
From the above, it is seen that a technique for improving the use of a wide area network is highly desirable.
SUMMARY OF THE INVENTION
The present invention relates to a technique, including a method and system, for providing more quality to telecommunication services. More particularly, the present invention relates to quality of service management using a novel traffic monitoring technique. The present monitoring technique is predominantly software based, but is not limited to such software in some embodiments.
In a specific embodiment, the present invention provides a system with a novel graphical user interface for monitoring a flow of information coupled to a network of computers. The user interface is provided on a display. The display has at least a first portion and a second portion, where the first portion displays a graphical chart representing the flow of information. The second portion displays text information describing aspects of the flow of information. The combination of the first portion and the second portion describe the information being profiled.
In an alternative specific embodiment, the present invention provides a novel computer network system having a real-time bandwidth-profiling tool. The real-time bandwidth-profiling tool has a graphical user interface on a monitor. The graphical user interface includes at least a first portion and a second portion. The first portion displays a graphical chart representing the flow of information. The second portion displays text information describing the flow of information. The combination of the first portion and the second portion describe the information being profiled.
In still an alternative embodiment, the present invention provides a novel bandwidth-profiling tool. The present bandwidth profiling tool includes a variety of computer codes to form computer software or a computer program, which is stored in computer memory. The program includes a first code that is directed to measuring a data rate for a flow of information from an incoming source, which is coupled to a network of computers. The program also has a second code that is directed to categorizing the data rate from the flow of information based upon at least one of a plurality of traffic classes and a third code that is directed to outputting a visual representation of the data rate in graphical form on a display. A fourth code is used to direct the outputting of a text representation of the one of the plurality of traffic classes on the display. The present invention has a variety of other codes to perform the methods described herein, and outside the present specification.
Numerous advantages are achieved by way of the present invention over pre-existing or conventional techniques. In a specific embodiment, the present invention provides a single point or a single region to manage telecommunication traffic including directory services and bandwidth management. Additionally, in some, if not all embodiments, the present invention can be implemented at a single point of access such as a computer terminal or firewall, for example.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Traffic monitoring tool for bandwidth management does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Traffic monitoring tool for bandwidth management, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Traffic monitoring tool for bandwidth management will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3099741

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.