Traffic manager, gateway signaling and provisioning service...

Multiplex communications – Data flow congestion prevention or control – Flow control of data transmission through a network

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S338000, C370S349000, C370S350000, C370S352000, C370S389000, C370S409000, C370S410000, C370S503000, C370S522000, C379S088170, C379S093070, C379S114030

Reexamination Certificate

active

06522629

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to the management and control of broadband integrated services performed via digital, channelized, packetized or optically coded networks, and in particular a system for organizing, interfacing, managing, loading and controlling, in real time, grouped or organized information (such as packetized data) transported through interface access devices and switches that are in compliance with domestic and international communication standards. Further, the invention relates to the deployment of signaling in a packetized network utilizing technology such as Asynchronous Transfer Mode (ATM), which maximizes utilization of components and segments of existing networks while simultaneously providing a high bandwidth platform to support commercially competitive telecommunications and information services as well as providing a bridge between various packet protocols, modulation techniques and access technologies.
Traditional U.S. long-distance and local telephone companies do not offer the enhanced data transfer capabilities that modern business operations need. They began in the 1960's with pulse coded modulation/time division multiplexing (PCM/TDM). These systems and networks typically use digitally channelized multiplexers designed to carry voice transmissions onto individual transmission interface media (e.g., copper wire, coaxial cable, optical fiber and wireless). Base services are typically provided at 64 Kbps (DS0 channels), and corporate service with T1 (1.54 Mbps) transmission speed, which is equivalent to 24 DS0 channels. In Europe and Asia the standard is E1 (2.04 Mbps) which provides for 30 DS0 channels.
The time division multiplexing (“TDM”) technique divides the data switching or transmission bandwidth of the network facility into equal sized time slots, which have the appropriate bandwidth needed to carry a telephone voice conversation. TDM generally served its purpose when the network was primarily used for standard telephone voice transmission. However, modern telecommunications networks are now being used to transmit internet protocol (IP), video, full duplex and data in addition to voice. These services are being expanded to accommodate PCS cellular services as well as traditional telephone services. Each of these applications has varying data transmission bandwidth requirements that differ from each other and from requirements associated with traditional TDM telephony. As a result, traditional narrowband digital techniques such as TDM have not been able to fully accommodate the information and data transmission requirements of broadband equipment.
Moreover, in conventional narrowband TDM telephone networks, each circuit has a fixed bandwidth. Once a voice connection is established, its bandwidth cannot be used by any other connection, whether there is any traffic flowing or not. For instance, once a voice connection is established, a bandwidth of 56 kilobits per second is allocated for voice and 8 kilobits per second is allocated for signaling, thereby consuming 64 kilobits per party for the duration of the connection. When one of the parties is listening to the other party, the listening party does not generate any traffic. Although that allocated bandwidth is not used during such silent periods, it cannot be used to transfer any other traffic. That is, the channel bandwidth is occupied and consumed whether it is being used or not. Accordingly, there is a need for a network management system that makes efficient use of available bandwidth resources by allocating and consuming bandwidth only when payload traffic is present.
Packet technologies such as Asynchronous Transfer Mode (ATM) and packet internet protocols (IP) such as IPV4 and IPV6 technologies are now being applied to the switching and transmission facilities and to the physical and logical interfaces of public networks as well as private LAN and WAN networks. For example, where TDM uses time slots to divide the bandwidth into fixed size channels, ATM uses 53 byte cells to divide the bandwidth into virtual channels. Each cell includes a header that identifies a virtual path and virtual channel to which the cell belongs. Cells are allocated to a virtual channel in response to the needs of the users sending information over the virtual channel, subject to the limits of the transmission facilities, physical interfaces and switches that carry the virtual channel.
Private communications networks have been using packetized technology and are now using Ethernet, Gigabit Ethernet, X.25, various light wave products and wireless products in addition to ATM and IP to service customers over a large geographic area. In practice, it is not cost effective for a private network operator to install its own transmission facilities between different sites. Instead, private network operators often lease transmission lines from a public carrier. As a general rule, these leased lines are dedicated and designed to provide full transmission capacity 24 hours a day regardless of actual utilization. A large network of leased lines is typically required to provide connections between sites in a private network.
Referring to
FIG. 1
, a typical legacy telecommunications network includes narrowband and special purpose broadband networks. In all such conventional high bandwidth networks, operators have constructed large and often specialized networks to accommodate the specific kinds of information or data transmission required by the enterprise. These included, among others, PSTN (Public Switched Telephone Networks) optimized for channelized circuits or switched voice, with overlay of packetized networks that have various protocol interfaces for handling IP internet protocols, LAN and WAN, and cable and broadcast television networks. Because many of these specialized networks were built for peak voice load conditions, the average utilization or information throughput was very low and resulted in expensive unused capacity. There is therefore a continuing interest in providing a telecommunications network that will support not only internally generated enterprise communications of diverse types but also carry communications of diverse types originated by third party subscribers.
The principal requirement of a modern network is its ability to handle video and data as well as voice traffic to and from diverse devices. One efficient way of providing such services is to logically allocate the resources of an existing network in cooperation with dynamic traffic paths provided by packetized networks. An effective arrangement is to overlay a number of logical networks, referred to herein as virtual private networks, each including nodes or switching devices and interconnecting logical links. Each virtual network forms a logical traffic path through an existing network. The logical links of the virtual networks share the capacities of physical links present in the existing physical network.
A physical network may consist of physical nodes formed by packet switches, routers, broadband interface access devices, customer-side interface access devices, physical links interconnecting the nodes and various ancillary devices. A physical link or “backbone” utilizes a transport medium such as copper wires, coaxial cables, fiber optical conductors, and/or wireless radio links, individually or in combination. In general, the physical links are arranged into trunk groups or circuit groups which extend between the physical nodes. There are access/egress interface access nodes to the physical network, to which access devices, such as telephone sets computer modems, cable modems or wireless devices are connected.
Information, whether channelized or packetized, such as voice, IP, video and data, is transported across the packet network by different transport means, for example STM (Synchronous Transfer Mode) and ATM (Asynchronous Transfer Mode).
A broadband packetized services digital network handles both data transmissions (e.g., computer) and telecommunications (e.g., telephone). This carrier ser

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Traffic manager, gateway signaling and provisioning service... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Traffic manager, gateway signaling and provisioning service..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Traffic manager, gateway signaling and provisioning service... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3162280

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.