Boring or penetrating the earth – With self-acting cyclic advance and retraction of tool or...
Reexamination Certificate
2001-12-03
2004-01-20
Neuder, William (Department: 3672)
Boring or penetrating the earth
With self-acting cyclic advance and retraction of tool or...
C175S098000, C175S104000
Reexamination Certificate
active
06679341
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to tractors for moving equipment within passages.
2. Description of the Related Art
The art of moving equipment through vertical, inclined, and horizontal passages plays an important role in many industries, such as the petroleum, mining, and communications industries. In the petroleum industry, for example, it is often required to move drilling, intervention, well completion, and other forms of equipment within boreholes drilled into the earth.
One method for moving equipment within a borehole is to use rotary drilling equipment. In traditional rotary drilling, vertical and inclined boreholes are commonly drilled by the attachment of a rotary drill bit and/or other equipment (collectively, the “Bottom Hole Assembly” or BHA) to the end of a rigid drill string. The drill string is typically constructed of a series of connected links of drill pipe that extends between ground surface equipment and the BHA. A passage is drilled as the drill string and drill bit are together lowered into the earth. A drilling fluid, such as drilling mud, is pumped from the ground surface equipment through an interior flow channel of the drill string to the drill bit. The drilling fluid is used to cool and lubricate the bit, and only recently for drilling to remove debris and rock chips from the borehole, which are created by the drilling process. The drilling fluid returns to the surface, carrying the cuttings and debris, through the annular space between the outer surface of the drill pipe and the inner surface of the borehole. As the drill string is lowered or raised within the borehole, it is necessary to continually add or remove links of drill pipe at the surface, at significant time and cost.
Another method of moving equipment within a borehole involves the use of a downhole tool, such as a tractor, capable of gripping onto the borehole and thrusting both itself and other equipment through it. Such tools can be attached to rigid drill strings, but can also be used in conjunction with coiled tubing equipment. Coiled tubing equipment includes a non-rigid, compliant tube, referred to herein as “coiled tubing,” through which operating fluid is delivered to the tool. The operating fluid provides hydraulic power to propel the tool and the equipment and, in drilling applications, to lubricate the drill bit. The operating fluid also can provide the power for gripping the borehole. In comparison to rotary equipment, the use of coiled tubing equipment in conjunction with a tractor should be generally less expensive, easier to use, less time consuming to employ, and should provide more control of speed and downhole loads. Also, a tractor, which thrusts itself within the passage and pushes and pulls adjoining equipment and coiled tubing, should move more easily through inclined or horizontal boreholes. In addition, due to its greater compliance and flexibility, the coiled tubing permits the tractor to perform much sharper turns in the passage than rotary equipment.
A tractor can be utilized for drilling boreholes as well as many other applications, such as well completion and production work for producing oil from an oil well, pipeline installation and maintenance, laying and movement of communication lines, well logging activities, washing and acidizing of sands and solids, retrieval of tools and debris, and the like.
One type of tractor comprises an elongated body securable to the lower end of a drill string. The body can comprise one or more connected shafts in addition to a control assembly housing or valve system. This tractor includes at least one anchor or gripper assembly adapted to grip the inner surface of the passage. When the gripper assembly is actuated, hydraulic power from operating fluid supplied to the tractor via the drill string can be used to force the body axially through the passage. The gripper assembly is longitudinally movably engaged with the tractor body, so that the body and drill string can move axially through the passage while the gripper assembly grips the passage surface. A gripper assembly can transmit axial and even torsional loads from the tractor body to the borehole wall. Several highly effective designs for a fluid-actuated gripper assembly are disclosed in U.S. patent application Ser. No. 09/777,421. In one design, the gripper assembly includes a plurality of flexible toes that bend radially outward to grip onto the passage surface by the interaction of ramps and rollers.
Some tractors have two or more sets of gripper assemblies, which permits the tractor to move continuously within the passage. Forward longitudinal motion (unless otherwise indicated, the terms “longitudinal” and “axial” are herein used interchangeably and refer to the longitudinal axis of the tractor body) is achieved by powering the tractor body forward with respect to an actuated first gripper assembly (a “power stroke” with respect to the first gripper assembly), and simultaneously moving a retracted second gripper assembly forward with respect to the tractor body (a “reset stroke” of the second gripper assembly). At the completion of the power stroke with respect to the first gripper assembly, the second gripper assembly is actuated and the first gripper assembly is retracted. Then, the tractor body is powered forward while the second gripper assembly is actuated (a power stroke with respect to the second gripper assembly), and the retracted first gripper assembly executes a reset stroke. At the completion of these respective strokes, the first gripper assembly is actuated and the second gripper assembly is retracted. The cycle is then repeated. Thus, each gripper assembly operates in a cycle of actuation, power stroke, retraction, and reset stroke, resulting in longitudinal motion of the tractor. A number of highly effective tractor designs utilizing this configuration are disclosed in U.S. Pat. No. 6,003,606 to Moore et al., which discloses several embodiments of a tractor known as the “Puller-Thruster Downhole Tool;” U.S. Pat. No. 6,241,031 to Beaufort et al.; and allowed U.S. patent application Ser. No. 09/453,996, which discloses an “Electrically Sequenced Tractor” (“EST”).
The power required for actuating the gripper assemblies, longitudinally thrusting the tractor body during power strokes, and longitudinally resetting the gripper assemblies during reset strokes may be provided by pressurized operating fluid delivered to the tractor via the drill string—either a rotary drill string or coiled tubing. For example, the aforementioned Puller-Thruster Downhole Assembly includes inflatable engagement bladders and uses hydraulic power from the operating fluid to inflate and radially expand the bladders so that they grip the passage surface. Hydraulic power is also used to move forward cylindrical pistons residing within sets of propulsion cylinders slidably engaged with the tractor body. Each set of cylinders is secured with respect to a bladder, so that the cylinders and bladder move together longitudinally. Each piston is longitudinally fixed with respect to the tractor body. When a bladder is inflated to grip onto the passage wall, operating fluid is directed to the proximal side of the pistons in the set of cylinders secured to the inflated bladder, to power the pistons forward with respect to the borehole. The forward hydraulic thrust on the pistons results in forward thrust on the entire tractor body. Further, hydraulic power is also used to reset each set of cylinders when their associated bladder is deflated, by directing drilling fluid to the distal side of the pistons within the cylinders.
A tractor can include a valve system for, among other functions, controlling and sequencing the distribution of operating fluid to the tractor's gripper assemblies, thrust chambers, and reset chambers. Some tractors, including several embodiments of the Puller-Thruster Downhole Tool, are all-hydraulic. In other words, they utilize pressure-responsive valves and no electrically controlled valves. One type of
Bloom Duane
Levay Robert
Moore Norman Bruce
Knobbe Martens Olson & Bear LLP
Neuder William
Western Well Tool, Inc.
LandOfFree
Tractor with improved valve system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Tractor with improved valve system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tractor with improved valve system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3202427