Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Indication or control of braking – acceleration – or deceleration
Reexamination Certificate
2002-03-25
2004-01-20
Black, Thomas G (Department: 3663)
Data processing: vehicles, navigation, and relative location
Vehicle control, guidance, operation, or indication
Indication or control of braking, acceleration, or deceleration
C701S041000, C701S091000, C340S465000, C180S204000
Reexamination Certificate
active
06681170
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a tracking and driving speed regulating device for motor vehicles, having a sensor device for monitoring a road track, a steering regulator for analyzing signals of the sensor device and for issuing steering commands to a steering actuator, and having a cruise controller, acting upon the drive system of the vehicle, which can be switched to an operational state using a main switch, and, in the operational state, may be activated by an actuation signal generated by an operating element
BACKGROUND INFORMATION
Vehicle speed regulating devices for motor vehicles are known, with which the speed of the vehicle is held to a setpoint value set by the driver. By operating the main switch, the cruise control is converted to the operational state. The actual cruise control, however, begins only when the driver gives a so-called set command by using an operating element, typically a multifunctional switch designed as a lever which is positioned near the steering wheel. This command has the effect that the actual speed of the vehicle is assumed as the setpoint value and put in as the basis for the cruise control.
The input of the set command usually takes place by deflecting the multifunctional switch briefly in the direction (set−). Prolonged holding of the multifunctional switch in the (set−) position has the effect of throttling the vehicle engine and gradually decreasing the speed. As setpoint value for the subsequent cruise control, the speed is then taken over which the vehicle had reached when the switch was let go. As a matter of choice, cruise control can also be activated by deflecting the multifunctional switch briefly in the opposite direction (set+). Prolonged holding of the multifunctional switch in the (set+) position has the effect of increasing the setpoint value, and thus accelerating the vehicle. In this case, too, the speed reached by the vehicle, when the switch is let go, forms the setpoint value for the subsequent regulation. By inputting the command “cancel” the cruise controller is inactivated. However, the most recently valid setpoint value remains stored. By inputting the command “resume” the cruise controller can be reactivated, so that cruise control to the previously stored setpoint value can be resumed. Input of the commands “cancel” and “resume” is usually performed by pulling or pushing the multifunctional switch in the direction at right angles to the directions “set−” and “set+”. By switching off the main switch, the regulating system is completely inactivated, and the stored setpoint value is deleted.
A further development of this cruise control system, also known as “cruise control”, is represented by so-called adaptive cruise control (ACC). In such an ACC system, using a radar device, the distance from a preceding vehicle is additionally measured, and, provided there is a vehicle within the detection range of the radar, the regulation is not made based on the preset setpoint speed but rather based on a safe, speed-dependent setpoint distance from the preceding vehicle. Examples of such ACC systems, the use of which can considerably increase travel comfort and safety, are described in German Published Patent Application No. 42 00 694, as well as in Winner et al.: “
Adaptive Cruise Control System Aspects and Development Trends
”, SAE Technical Paper Series 96 1010, 1996, pp 27-36. In these systems it is provided that the regulation of the separation distance is interrupted if the driver intervenes in the driving happenings, for example, by activating the brake.
German Published Patent Application No. 195 07 957 proposes a tracking and travel speed regulating device, which supports the driver not only in keeping to the desired speed and/or the distance from the preceding vehicle, but also in keeping in lane (LKS=lane keeping support). An optical sensor device is provided for this, with the use of which the spatial position of the vehicle with respect to the lane can be detected, for example, by the use of lane markings. If electronic evaluation of the data detected, using the optical sensor device, indicates that the vehicle is approaching a lateral lane limit, an intervention in the steering of the vehicle is made in such a way that the vehicle is drawn into the middle of the lane. As mentioned in the cited document, this automatic tracking function can be activated and deactivated by the driver in a similar manner, as is the case in the vehicle speed regulating device described at the outset. This tracking function is also automatically deactivated when the driver operates the brake or otherwise actively intervenes in the travel happenings. To be sure, a desirable unloading of the driver is achieved by these various types of automated functions, but on the other hand, along with the increasing number of automated functions, there is also an increase in the appertaining operating elements as well as the number of possible combinations of system states, and it is becoming increasingly more difficult for the driver to keep current at all times on the active or inactive state of the systems or partial systems. In some individual cases this may lead to misestimations or to irritations which impair the driver's sense of safety, and thus also of the acceptance of such automatic support systems.
SUMMARY OF THE INVENTION
It is the object of the present invention to create a tracking and driving speed regulating device which makes a simpler and more lucid operation possible for the driver.
According to the present invention, the object is attained by making the steering regulator switchable to an operating state by a separate main switch independent of the speed regulator, and being able to be activated in the operating state by the same actuation signal as the speed regulator.
Although the cruise control (ACC), on the one hand, and the steering control (LKS), on the other hand, fundamentally work independently of each other, according to the present invention, both systems are activated by the same actuation signal, so that a common operating element can be used for producing this actuation signal. In this way, not only is a structural simplification achieved by simplification of the number of operating elements, but, above all, the clarity of the operating system is improved. Yet, the separate main switches make it possible to switch the two systems on and off separately of each other, so that the driver keeps the unlimited freedom of decision on whether, and possibly which of the available functions he wants to use.
However, in the case of regulation, under the conditions under which the automatic tracking function can be used in a way that makes sense (clearly marked lanes, no crossings, off ramps or sharp curves), suitable assumptions for using the cruise control or (inter-automobile) separation regulating function may be in order. This is true particularly in the case of travel on expressways or country roads having few curves. In practice, therefore, the two automatic functions ACC and LKS are mostly used together, and under these circumstances, the possibility of activating both systems by using a single command represents a clear improvement in operating comfort. In a typical application, for example, the case of an express highway trip, after accessing the expressway, the driver has to operate the main switch for both systems only once. Then, during the trip, if, for example, both automatic functions were interrupted because of a braking maneuver, one single command, which produces the actuation signal, ensures that both systems are reactivated again, and for example, a situation is avoided where the driver does indeed reactivate the separation distance regulation, but forgets to reactivate the tracking function as well, and then notes with alarm that the vehicle runs out of the lane.
As a matter of preference, the cruise control and the automatic tracking function can also be deactivated by at least one common switch-off signal. An example of such a co
Koenig Winfried
Winner Hermann
Black Thomas G
Kenyon & Kenyon
Robert & Bosch GmbH
To Tuan C
LandOfFree
Tracking and driving speed regulating device for motor vehicles does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Tracking and driving speed regulating device for motor vehicles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tracking and driving speed regulating device for motor vehicles will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3212370