Toy rocket with parachute hatch release

Amusement devices: toys – Aerodynamically supported or retarded – Parachute

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C446S051000, C446S049000

Reexamination Certificate

active

06478648

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention relates generally to toy rockets and more particular to toy and model rockets having deployable parachutes.
BACKGROUND OF THE INVENTION
For decades, toy rockets have been popular playthings for children of all ages. Such rockets have been made available in all shapes and sizes and many models have been provided with their own propellant, such as pressurized water, pressurized air, or the like. The popularity of toy rockets has even extended to adolescent and adult hobbies in the form of model rockets propelled by solid fuel rocket engines. As a matter of fact, model rocket enthusiasts often spend countless hours constructing model rockets that are large and extremely realistic. Such model rockets typically require a substantial financial investment and can be extremely valuable items for their owners.
Most toy rockets that have been the playthings of children are designed to be launched by one of various means into the air for flight. Rarely, however, have toy rockets been provided with deployable parachutes. Thus, once launched, toy rockets simply follow a trajectory up and then back down to the ground where they impact the earth. Since toy rockets are sturdy and follow relatively low altitude trajectories, their impact with the ground rarely causes damage and they are simply retrieved and launched again.
One type of toy rocket that functions in this way is commonly known as the “Nerf®” rocket. Nerf rockets usually have an elongated cylindrical fuselage that is made of a foam rubber material and that has fins affixed to and extending outwardly from the tail of the rocket. In use, nerf rockets, like many other toy rockets, are propelled from a launcher by means of compressed air, whereupon they follow natural trajectories up and back to the earth.
In contrast to toy rockets, model rockets that are propelled by solid fuel rocket engines commonly are provided with parachutes that are deployed during flight of the rocket to ease the rocket gently back to the earth when its engines are spent. A parachute is desirable for model rockets because these rockets typically are heavier and more fragile than toy rockets and are propelled to much higher altitudes. Accordingly, if these model rockets are allowed to fall naturally back to earth, they can easily be destroyed upon impact with the ground. This is a particularly acute problem with large expensive model rockets, which sometimes include parachutes for each stage as well as redundant parachutes for more expensive portions of the rocket.
In model rockets, the parachute usually is folded and stowed in the nose-cone section of the rocket during flight. For deployment of the parachute, the nose-cone typically is ejected by means of an explosive charge that is activated as the rocket's engines burn out. With the nose-cone thus ejected, the parachute can unfold and deploy for easing the rocket body back to earth.
While such methods of deploying parachutes from model rockets have been relatively successful in the past, they nevertheless have been plagued with numerous problems and shortcomings inherent in their respective designs. For example, the explosive charge that ejects the nose-cone and deploys the chute usually is triggered by the burning engine of the model rocket. Ideally, it is desirable that the explosive charge occur after the engine has burned out. However, such accurate timing has proved elusive such that chute deployment sometimes occurs while the main engine is still burning or occurs after the rocket has reached apogee and is falling back to earth. In addition, the explosive charges that deploy the chutes must be replaced after each flight, which is tedious and time consuming and can become expensive after numerous flights. Also, it is not uncommon that the explosive charge designed to deploy the parachute fails to fire, whereupon a potentially expensive model rocket plummets back to earth and is destroyed.
As mentioned above, unlike model rockets, most toy rockets are not provided with parachutes. This is because toy rockets usually are inexpensive and rugged enough to withstand and impact with the earth. Further, there has previously been no convenient method of deploying a parachute from a toy rocket since there is no burning engine that can be used to trigger a chute deployment charge. Nevertheless, parachutes have been found to be amusing to children who play with toy rockets. It is thus desirable that toy rockets do deploy parachutes at the apogees of their trajectories to ease them back to earth and, in the process, to amuse their owners.
In the past, a few toy rockets have been provided with makeshift parachutes, but the chutes usually are simply wrapped around the body of the rocket and the rocket thrown or propelled into the air. With these types of toy rockets, the chute simply unwinds as the rocket tumbles upwardly through the air and, when fully unwound, deploys to stop the upward movement of the rocket and ease it back to earth. Obviously, such a method of stowing and deploying a parachute is highly undesirable since the rocket tends to tumble as it moves upwardly and does not fly straight through the air. Further, the time at which the chute deploys is completely uncontrollable and the chute rarely deploys at the apogee of the rocket's trajectory, where deployment is most desirable.
Recently, rockets have been designed with velocity dependent parachute releases, as shown in applicant's U.S. Pat. Nos. 5,407,375 and 5,549,497. These rockets utilize hatches with latches which become unlatched during initial propulsion of the rocket. The unlatched hatch is suppose to open when the wind resistance upon the hatch becomes minimal. The problem however associated with these rockets has been the accuracy relating to the opening of the hatch as the force of the hatch spring must overcome the wind resistance at low velocities to open the hatch while still be weak enough not to overcome the force of the wind resistance upon the hatch during normal flight. As such, these rockets are prone to the latch prematurely opening prior to reaching its apogee resulting in a shortened flight or remaining closed through the apogee causing the parachute not to be deployed at all.
Accordingly, it is seen that a need remains for a rocket which may deploy a parachute and a reliably manner. It is to the provision of such therefore that the present invention is primarily directed.
SUMMARY OF THE INVENTION
In a preferred form of the invention a rocket comprises a body having a forward end relative to the direction of initial rocket propulsion and a rearward end opposite the forward end, and a hatch movably mounted to the body for movement between a closed and opened position through a hinge. The rocket also has descent control means actively coupled to the hatch and a latch coupled to the hatch. The latch is movable from a latched position maintaining the hatch in its closed position to a semi-unlatched position partially releasing the hatch upon initial forward movement of the rocket. The latch is also moveable from its semi-unlatched position to a fully unlatched position releasing the hatch as the rocket's forward movement nears arrestment. With this construction and with the forward movement of the rocket, the latch is moved to a semi-unlatched position which still maintains the hatch in a closed position, but as the rocket slows near its apogee the latch is moved to its fully released position so as to open the hatch and cause the deployment of the descent control means.


REFERENCES:
patent: 1486215 (1924-03-01), Zerbee
patent: 1635823 (1927-07-01), Di Giulio
patent: 1713432 (1928-05-01), Griggs
patent: 1938931 (1933-12-01), Newman
patent: 2008107 (1935-07-01), Norden
patent: 2023124 (1935-12-01), Dickover
patent: 2126156 (1938-08-01), Vogt
patent: 2312629 (1943-03-01), Culver et al.
patent: D158700 (1950-05-01), Weldon
patent: 2559458 (1951-07-01), Orr
patent: 2568475 (1951-09-01), Vaughan
patent: 2607159 (1952-08-01), Hunt et al.
patent: 2733699 (1956-02-01

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Toy rocket with parachute hatch release does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Toy rocket with parachute hatch release, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Toy rocket with parachute hatch release will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2992153

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.