Toy having enclosed antenna

Communications: electrical – Underwater – Electrodes and electrode systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C446S456000

Reexamination Certificate

active

06529139

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to an enclosed antenna for remote controlled toys.
BACKGROUND OF THE INVENTION
Remote controlled toys (e.g., remote control cars and boats), typically have a generally rigid wire antenna extending from both the transmitting, remote control device and the receiving, remote control toy vehicle, although some remote controlled vehicles (e.g., a remote controlled toy car commercially available under the trade designation “RICOCHET” from Hasbro, Inc. of Pawtucket, R.I.) have an antenna (e.g., a spiral wire) concealed in the vehicle. Remote control devices used for remote controlled toy vehicles transmit a radio frequency signal (e.g., typically 27 MHz or 49 MHz in the United States) via the rigid wire antenna (which may be a retractable antenna) to the antenna in or on remote control toy vehicle for operation of the vehicle. The antennae are often unavoidably damaged by children, such as being bent or broken, during normal use of the toy. For safety purposes, some wire antennas are often partially coated with plastic, and may even be non-rigid (e.g., Jakks Pacific, Inc., of Malibu, Calif. markets a remote controlled toy car under the trade designation “TURBO TOUCH RACER”, wherein the antenna in the remote control device is an external, flexible, plastic coated wire about 32 cm long). The remote control device transmitters typically have a range of up to 18.3-22.9 m (60-75 feet).
The required length of the antenna is a function of the operating frequency. Ideally, for a monopole antenna (e.g., the rigid wire antenna on the remote control device), the length of the wire should be about a ¼ wavelength. This translates into a length of about 2.77 m (109 inches) at 27 MHz or about 1.52 m (60 inches) at 49 MHz. Since these lengths are impractical for remote controlled toys, much shorter antennas are employed. The use of much shorter antennas requires additional circuit tuning elements, such as inductors and capacitors, to compensate for the shorter antenna length. The compensated antenna is not as good as a correct length antenna, so usually there is some minimum length which is needed for satisfactory performance.
Some consumer radio frequency based products (e.g., garage door openers or telephones) operate at significantly higher frequencies than remote controlled toys (e.g., 400 MHz garage door openers or 900 MHz telephones). Garage door openers typically have no external antennae, instead having a conducting trace along the edge of a printed circuit board containing the transmitter electronics. The trace serves as the transmitting antenna and fits within the remote transmitter housing. As stated previously, required antenna length is related to the device transmitting frequency (i.e., the higher the frequency, the shorter the required antenna length). Since garage door openers generally operate at 400 MHz , about ten times the frequency of remote controlled toys, only a relatively short conducting trace is necessary (i.e., a few inches).
SUMMARY OF THE INVENTION
The present invention provides a flexible, enclosed antenna for use in remote control toys including remote control devices and remote control vehicles (including cars and boats). If the enclosure is sufficiently opaque such that the antenna is not viewable therethrough, the antenna is “concealed”.
In one exemplary embodiment, the present invention provides a remote control device for use with a remote control toy, the remote control device including a housing and a flexible antenna mechanism enclosed or concealed within the housing. The flexible antenna mechanism comprises a flexible sheet material (substrate) that includes an electrically conductive layer on a major surface thereof. A controller is electrically coupled to a user input mechanism for transmitting an output signal to the remote control toy via the flexible antenna mechanism, wherein the output signal is representative of a control input received from the user input mechanism.
The electrically conductive layer may be on a major surface of the flexible substrate. The electrically conductive layer may include a highly electrically conductive material (e.g., metal, such as copper), which may be in the form of an electrically conductive trace. The flexible sheet material (substrate) preferably includes a dielectric material (e.g., a polymeric material, such as polyester).
The flexible sheet material (substrate) and the electrically conductive layer may be curved to fit or otherwise be accommodated within the housing. Example antenna patterns include an open loop, spiral shape, or slot antenna pattern.
The controller may include a radio frequency transmitter for transmitting the output signal via the flexible antenna mechanism. In one application, for example, the output signal is a radio frequency signal transmitted at 49 MHz . In another application, for example, the output signal is a radio frequency signal transmitted at 27 MHz .
In another embodiment, the present invention provides a remote controlled toy assembly. The assembly includes a remote control device having a housing and a flexible transmitting antenna mechanism enclosed or concealed within the housing. The flexible transmitting antenna mechanism includes a flexible sheet material (substrate) that includes an electrically conductive layer on a major surface thereof. A controller is electrically coupled to an input mechanism for transmitting output signals via the flexible transmitting antenna mechanism. The output signals are representative of a control input received from the user input mechanism. A remote control toy is responsive to the output signals for operation of the remote control toy.
The electrically conductive layer includes a highly electrically conductive metal. The flexible sheet material (substrate) includes a dielectric material. Additionally, the remote controlled toy includes a housing, a flexible receiving antenna mechanism enclosed or concealed within the housing, a control mechanism and a power source coupled to the control mechanism. The flexible receiving antenna is coupled to the control mechanism for receiving the output signals. The flexible receiving antenna mechanism comprises a flexible substrate and an electrically conductive layer.
In another aspect, the present invention provides a remote control device for use with a remote control toy. The remote control device includes a housing and an antenna mechanism enclosed within the housing. The antenna mechanism includes an electrically conductive layer positioned on (e.g., deposited on or otherwise applied, or at least partially embedded within) an interior surface of the housing. A user input mechanism is provided. A controller is electrically coupled to the user input mechanism for transmitting an output signal to the remote control toy via the antenna mechanism, wherein the output signal is representative of a control input received from the user input mechanism.
In this application, the term “highly electrically” refers to a material having a sufficiently low impedance such that the electrically conductive properties of the material do not result in substantial attenuation of signals transmitted therethrough. The term “dielectric material” refers to a substantially electrically non-conductive material. The term “flexible” antenna refers to an antenna which is capable of being easily hand-folded, flexed, twisted or bent.
Preferably, vehicles operated with remote control devices according to the present invention can operate together at distances of at least about 18.3-22.9 meters (60-75 feet), or even 30.5 meters (100 feet) or more, wherein the longer distances are typically more easily achieved in outdoor areas. Indoor areas typically have more sources of interference (e.g., structural elements, plumbing, wires, etc.).


REFERENCES:
patent: 3689929 (1972-09-01), Moody
patent: 3754269 (1973-08-01), Clavin et al.
patent: 3877030 (1975-04-01), Walker et al.
patent: 4444199 (1984-04-01), Shafer
patent: 4725827 (1988-02-01), Gallegos, Jr. et al.
patent: 4816836 (19

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Toy having enclosed antenna does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Toy having enclosed antenna, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Toy having enclosed antenna will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3069182

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.