Touchless fluid supply interface and apparatus

Valves and valve actuation – Electrically actuated valve – Remote or follow-up control system for electrical actuator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C137S801000, C137S559000, C236S012120

Reexamination Certificate

active

06513787

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a fluid supply apparatus and/or interface which provides for touchless control of the apparatus. In particular, it relates to a fluid supply apparatus and/or interface which provides for touchless control of the temperature of the fluid supplied. Further in particular, it relates to a fluid supply apparatus and/or interface which provides for touchless control of the temperature and also the on/off status of the fluid supply.
BACKGROUND TO THE INVENTION
A common application of fluid supply apparatus is with wash basins. Many wash basins include a single faucet spout through which water is supplied at a desired temperature. The water is turned on and off and the temperature of the water varied, typically, by way of one or more valves with one or more handles, spindles or levers. One disadvantage with these types of wash basin water supplies is that the user must make physical contact with the handle, spindle or lever. In applications where a high level of sterilisation or hygiene is required, this contact may be disadvantageous as the handles may not be sterile. This type of arrangement may also be disadvantageous where the user has a physical impairment which makes manipulation of the handle, spindle, or lever difficult.
One attempt at overcoming some of the problems associated with conventional faucet arrangements is to have large levers which may be manipulated by the elbows of a user. However, this still requires some contact between the user and the levers.
Another attempt at overcoming the above-mentioned disadvantages is to provide controls for the fluid supply that are manipulated by a foot of the user. Typically, these only allow for on/off control of the fluid. Also, the feet of users may be less adept at manipulating controls than the hands of users.
Another disadvantage of conventional faucet arrangements is that the water supply may be left running after the user has left. This may result in water being wasted. One attempt to overcome this is to have faucet controls which are depressed to allow water to be supplied and which slowly return to a non-depressed position to cut the water supply after a given interval. Typically, these require contact between the user and the faucet controls.
Such difficulties are also encountered in situations where the fluid outlet is located remotely or is distant from the controlling means. For example, the outlet may be close to the floor, above the users head (as in a shower) or located quite some distance from the users control location. In situations such as these, it may still be important for a user to be able to control the fluid flow within the hygene or other constraints discussed above.
One attempt at overcoming some of the above disadvantages is a “variable temperature electronic water supply system” which is disclosed in the United States Patent Specification numbered U.S. Pat. No. 5,504,950. This water supply system includes a touchless infrared sensor which detects the presence of hands purely for the purpose of switching the water supply on or off. The water supply system also includes a touch pad interface on top of a water spout to allow the user to vary temperature. Temperature may only be varied by choosing one of a number of predetermined ratios of hot and cold water.
The water supply system disclosed in U.S. Pat. No. 5,504,950 suffers the following limitations. Firstly, the user cannot vary temperature without making physical contact with the spout. This contact may be unhygienic or not sufficiently sterile for some purposes. Secondly, the temperature may only be varied between coarse predetermined settings. Fine adjustment of the temperature by the user is not provided for. Also, the predetermined temperature settings correspond to predetermined mixing of hot and cold water supplies, the temperatures and pressures of which may be adjusted to regulate the temperature at the coarse settings. Adjustment of the temperature itself and the regulation of temperature at any given setting is not provided for. Thirdly, the particular system of arranging for mixing of the hot and cold water supplies may be relatively cumbersome, particularly with regard to the quantity of materials needed.
Accordingly, it is an object of the present invention to provide a fluid supply system which allows for touchless variation of the temperature of the fluid supplied, or at least to provide the public with a useful choice.
DISCLOSURE OF THE INVENTION
According to one aspect of the present invention, there is provided a fluid supply apparatus suitable for supplying fluid, the fluid supply apparatus including:
at least one fluid outlet assembly from which the fluid may emerge;
at least one fluid control valve which allows variable control of the temperature of the fluid supply;
at least one touchless control user interface adapted to receive touchless control instructions from a user, wherein the Touchless control instructions may very the temperature of the fluid supply;
at least three touchless sensors mounted on said fluid outlet assembly, each said sensor adapted to sense an object in a respective sensing field;
wherein at least one of said touchless sensors enables the switching on and off of the fluid supply;
wherein at least one other of said touchless sensors enables the temperature of said fluid supply to increase;
wherein at the temperature of said fluid supply to decrease.
In an alternative aspect, the present invention provides for a stand-alone fluid control interface adapted to receive touchless control instructions from a user.
Preferably the stand-alone fluid control interface is mounted in a wall plate, tile or the like.
Preferably the stand-alone fluid control interface is constructed in the form of a tile, the tile may be shaped and dimensioned so as to be capable of mounting in a wall mounted location.
Preferably, the touchless control instructions may also turn the fluid supply on or off.
Preferably, the touchless control user interface includes a plurality of touchless sensors each adapted to sense an object in a respective sensing field.
Preferably, at least one of the sensors is adapted to transmit light and sense light reflected off an object positioned within a respective sensing field.
Preferably, at least one of the sensors is disposed in the fluid output assembly.
Optionally, at least one of the sensors is disposed at a location on the faucet, the location selected so that it is easily accessible to a users hands when using the faucet, preferably, the sensors being located proximate a base of the faucet.
Alternatively, at least one of the sensors may be located remote from the fluid output assembly.
Preferably, the touchless sensor user interface includes at least three sensors disposed in the fluid output assembly.
Alternatively, the at least three sensors may be located remote from the fluid output assembly.
Preferably the touchless control user interface includes at least one sensor disposed such that the sensing field of that at least one sensor substantially contains a portion of a trajectory of fluid emerging from the fluid spout assembly.
Preferably, the touchless control, user interface includes sensors disposed to have sensing fields to either side of the fluid output assembly.
Preferably, the sensors are disposed near an end of the fluid output assembly.
Preferably, the fluid supply apparatus is arranged such that the supply of fluid is switched on when an object is placed near the outlet of the fluid supply means and substantially in the trajectory of fluid that emerges from the fluid supply means and, preferably, the supply of fluid is switched off otherwise.
Preferably the touchless control user interface is arranged such that the temperature of the fluid may be increased by placing an object to one side of the end of the fluid output assembly and the temperature may be decreased by placing an object to another side of the end of the fluid output assembly.
Preferably, the touchless control, user interface includes a first controller which moni

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Touchless fluid supply interface and apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Touchless fluid supply interface and apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Touchless fluid supply interface and apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3156705

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.