Touch tone replacement for internet telephony

Multiplex communications – Pathfinding or routing – Combined circuit switching and packet switching

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S352000, C370S353000, C370S466000, C341S126000, C341S144000, C341S155000, C341S177000, C341S181000, C375S254000, C375S334000, C379S339000

Reexamination Certificate

active

06757276

ABSTRACT:

BACKGROUND OF THE INVENTION
A. Field of the Invention
This invention relates generally to the field of telecommunications, and more particularly to methods by which telephone calls (either via a personal computer or conventional “black telephone” set) are placed between two parties over a data network such as the Internet.
B. Description of Related Art
Internet telephony presents an attractive alternative for long distance telephone calls, as compared to the public switched telephone network (PSTN), which has been the traditional transmission medium. The primary advantage is cost. Long distance service providers for the PSTN offer domestic services at rates ranging from roughly 10 to 30 cents per minute, and international rates for substantially more, depending on the time of day, day of the week, and the distances involved. In contrast, the cost of Internet telephony anywhere in the world is potentially the cost of a local telephone call to the local Internet telephony provider at one end and the cost of a local call from an Internet telephony service provider at the far end to the destination telephone. Once the call is routed from the local Internet telephony provider onto the Internet, the transmission of the call from the local Internet telephony provider to the far end Internet telephony provider is free to the calling and called party for all practical purposes, regardless of where the two parties are located. The same holds true for whether the call is sent over the Internet or over a private data network.
It is presently contemplated that Internet service providers with a Point of Presence on the Internet will be suitable entities to offer Internet telephony services. The devices that are used by most Internet service providers for Internet access are known as Network Access Servers or Remote Access Servers. These products are commercially available from 3Com Corporation and other telecommunications equipment manufacturers such as Ascend Communications, Lucent Technologies (successor to Livingston Enterprises), and Multitech.
A representative Network Access Server is the Total Control Enterprise Network Hub from 3Com Corporation, described in the patent of Dale M. Walsh, et al., U.S. Pat. No. 5,528,595, which is fully incorporated by reference herein. This device has a telephone line interface that is connected to a high-speed multiplexed digital telephone line connected to the PSTN, such as a T1 line. The device further includes a plurality of digital modems to perform signal conversions on the data from the telephone line channels and a bus network connecting the modems to a network interface card or module. The network interface couples the device to a local or wide area network, such as the Internet service provider backbone network or the Internet. Network Access Servers are particularly suited for use in Internet telephony, as they can be configured with software to perform the functions of a Gateway or Terminal, as defined by the relevant ITU-T H.323 and H.225 specifications. This is particularly so if the device is configured with a general purpose computing platform (such as the EdgeServer card of the Total Control Network Access Server), as described in the pending patent application of William Verthein, Daniel L. Schoo and Todd Landry, U.S. Ser. No. 08/813,173, also incorporated by reference herein.
In a typical Internet telephony scenario, a user will attempt an Internet telephony call with either a touch tone telephone or else a personal computer equipped with a modem, microphone, speaker and a suitable commercially available telephone software package, such as Megaphone™. In either circumstance, the situation may arise in countless types of telephone calls in which the user has to enter alpha-numeric information with their telephone or PC. For example, when the user calls an automated system for processing bank or individual retirement account transactions, the system typically will prompt the user to enter digits on their telephone corresponding to their social security number, password number, and account number. As another example, the pressing of digits on the phone is often necessary in order to navigate through a voice mail menu system, or in order to use an automated flight arrival or departure system maintained by an airline, to name a few others.
When the user presses a number on the telephone key pad, e.g., “2”, tone generation circuitry in the telephone (or PC) generates what are known as multifrequency tones. These tones are sometimes referred to as DTMF (Dual Tone MultiFrequency) tones. For example, the number “2” is represented by two tones having a frequency of 700 and 1100 Hz. Each digit from 0 to 9 has its own unique set of two tones. Additionally, the # key and the * key also have their own tones associated therewith. These tones are transmitted in-band (i.e., in the voice band) from the user to the far end for processing.
The present inventors have appreciated that the problem can arise in the transmission of telephone calls over a data network where the DTMF tone is subject to noise or distortion before it reaches the modem (or other device or system) coupling the telephone line to the data network. For example, a user may purchase an inexpensive telephone that has a poor quality DTMF tone generator, and use that telephone when dialing over a noisy or poor quality analog PSTN line. Furthermore, when the DTMF tones are transmitted to the modem linking the PSTN to the data network (e.g., the modems in a network access server acting as a Gateway/Terminal), the tones undergo lossy data compression and signal transformation processes before being placed on the data network. As a result, the devices on the network may have difficulty processing the data signals representing the DTMF tones, and in particular discriminating between one set of tones and other. The possibility may arise in which the tones associated with “1” are interpreted as the tones associated with “2”. Or, the tones may simply not be recognized. Obviously, the occurrence of such an error would, at the very least, be extremely inconvenient to the user, and could be potentially very problematic. For example, mistakes could be made in the handling of the user's investment account, they could get the wrong flight times from the airlines, they would be unable to leave an important message or leave it with the wrong person, etc.
It is known in the art to detect DTMF tones in a modem, including a modem in a network access server. See the patent to Marc S. Baum, et al., U.S. Pat. No. 5,577,105, assigned to the assignee of the present invention. The Baum et al. '105 patent is hereby incorporated by reference herein. In the Baum et al. '105 patent, the DTMF tones are used by the network access server to perform various functions for an incoming call, such as quickly configure a modem to operate in a manner compatible with the transmission requirements of a remotely located modem, call up specific applications programs, or to route a call to a particular destination on a network. However, the potential for downstream mis-identification of the tones or difficulty in processing the tones, and the solution thereof provided by the present invention, is not recognized or appreciated in the above Baum et al. '105 patent, or other prior art known to the present inventors.
SUMMARY OF THE INVENTION
A method is provided for processing a touch tone (e.g., DTMF tones) subject to noise or distortion either during generation of the touch tone or during transmission of the touch tone from the source along a transmission medium, such as an analog telephone line or radio frequency cellular telephone link. In one embodiment, the method comprises the first step of receiving the tone, such as, by receiving the tone in a modem in a network access server or in some other device linking a telephone or time division multiplexed network to a packet switched network. After the tone is received, it is analyzed to determine what digit the tone corresponds to. For example, tone processin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Touch tone replacement for internet telephony does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Touch tone replacement for internet telephony, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Touch tone replacement for internet telephony will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3298263

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.