Electricity: motive power systems – Positional servo systems – Program- or pattern-controlled systems
Reexamination Certificate
2000-03-13
2001-06-05
Nappi, Robert E. (Department: 2837)
Electricity: motive power systems
Positional servo systems
Program- or pattern-controlled systems
C318S568110, C318S568120, C318S568210, C318S568100, C901S002000, C901S014000, C901S030000
Reexamination Certificate
active
06242879
ABSTRACT:
BACKGROUND OF THE INVENTION
In fabricating semiconductors, silicon wafers are often held in a cassette and then moved to various pre-programmed processing locations by a robotic handling system. The latter typically includes a mechanism with degrees of freedom in radial (R), angular (⊖) and vertical (Z) directions and having a robot arm with a vacuum or edge-gripping wand. The robot must be able to pick up wafers from a storage cassette and then transfer them to a designated station or a plurality of stations where the wafer will undergo some arbitrary process such as heating or alignment. In order to perform these actions, the robot must have precise knowledge of the R, ⊖ and Z positions of the wafer at all cassette and station locations. A robot control system must provide the aforesaid knowledge to position the robot arm and thus the gripped wafer precisely within a cassette or process station for each robot function.
In a typical wafer handling layout the general geometry of both the robot and the various process stations such as the cassette stand are known, and the dimensional relationships between the robot and each station are known within nominal tolerances (e.g.=0.05 inches) available from CAD drawings or manual measurements. When in use, however, the robot must be controlled to move wafers within extremely close tolerances in order to assure that the robot system operates properly without damaging any system component or the wafer being handled.
To provide proper operation of the robot system when initially set up or when restarted after replacement of a component or when a process location has been changed, the robot must be programmed or “taught” so that for each operation phase, the robot arm is positioned precisely at the proper location for the desired function. Heretofore, this initial and/or subsequent programming or “teaching” step was accomplished manually by trained personnel using visually estimated trial and error adjustments of the robot mechanism and control.
For example, using conventional controls, a robot was heretofore installed and “taught” by jogging the robot around and, at each process station, recording wafer placement locations with a teach pendant. Besides consuming many hours, this manual procedure introduced subjectivity and thus a significant possibility for errors since no two technicians could set the same positions. This created a problem of reproducibility, that is, of setting the robot in a precise predetermined position for each of a multitude of cycles. Whenever a wafer cassette is not perfectly positioned within specifications or a machine component wears, settles or malfunctions and requires replacement, the robot must be re-taught because it cannot adapt to such variations. If the robot is not re-taught properly within close tolerances, serious damage or loss of expensive wafers could result.
In copending U.S. patent application Ser. No. 09/270,261, filed Mar. 15, 1999, an automatic calibration system for robots is disclosed wherein sensors were employed on both the robot and also on the cassette or process station in which the wafer was to be placed. Although the aforesaid system has been successful in solving the automatic calibration problem, the necessity to provide sensors tended to increase the cost of the system as well as entailing other disadvantages. For certain applications the aforesaid system also provides superior results but in other applications of the technology, the present invention offers a superior solution to the aforesaid system. For example, in some environments sensors cannot be used.
It is therefore a general object of the present invention to provide an alternative method and apparatus to the aforesaid sensor system which is often an improved system from the perspectives of cost or reliability. The present invention does not require sensor components and moreover, will operate reliably and continuously for multitudes of cycles and within close tolerances to manipulate wafers from cassette holders to various process stations without any damage to wafers.
Another object of the invention is to provide an automatic calibration system for one or more degrees of freedom of a robot (namely R, ⊖ or Z) while employing the aforesaid sensor system for the balance of the degrees of freedom. For example, the present invention could be used to automatically calibrate the R and ⊖ axes of a given robot while the aforesaid sensor system could be used to calibrate the Z-axis.
Further objects of the invention are to provide a wafer-handling automatic calibration system that will automatically calibrate and adjust a wafer handling robot in a relatively short time, for example, after robot components have been removed and replaced.
Another object of the present invention is to provide an automatic calibration system that utilizes a motion control system that can digitally measure the velocity of a servo axis and, based upon this velocity signal, determine when the servo-driven axis begins to collide with the part of the target machine to which the robot is referencing.
Another object of the invention is to provide an automatic calibration system for a wafer handling robot which utilizes a machine controller that is programmed to utilize known dimensional data as well as robot motor velocity changes which occur when the robot touches structural features of a process station for controlling robot movements to precise wafer contacting locations.
Still another object of the invention is to provide a robotic wafer handling system having improved reproducibility of the position of the wafer holding wand in the locale where a semiconductor wafer is placed or removed from an enclosure by virtue of the known dimensional data of the wand and features of the enclosure as well as motor velocity inputs from the robot which are processed in a motor controller for controlling robot movement to precise wafer contacting locations.
SUMMARY OF THE INVENTION
In accordance with the principles of the invention a touch calibration method and apparatus is provided which enables a multi-axis robot machine to automatically precisely locate physical, fixed objects within its working envelope without the use of any sensors. The invention is particularly suitable for robotic applications where the multi-axis robot operates within a defined environment and moves to or interacts with various locations (each location is referred to as a station). This touch calibration method enables the robot to automatically locate the stations with high precision by touching distinct physical features on each station. The features are chosen such that the motion to locate each one is isolated to one axis in order to ensure an unlinked, independent coordinate. Each feature has a known geometry to the point of interaction between the robot and the station, as well the geometry between the robot's contact point and the point of interaction with the station. To ensure axis independence, the order in which these features are located is important.
A system embodying principles of the invention such as a semiconductor fabrication system, is composed of a multiple axis robot operating within a defined environment, and a machine controller which employs closed loop servo motor control and is directly connected to the robot motors. Each robot motor or robot which moves an actuator to touch various objects is a servo motor connected in a closed loop fashion. Attached to each motor is a rotary position encoder that produces two signals in quadrature. The machine controller used in the present invention employs the method and apparatus of U.S. Pat. Nos. 4,639,884 and 5,062,064 in order to determine the velocity of these motors. In the process of achieving a desired motor velocity, the machine controller applies a torque to the motor that is related to how the measured velocity of the motor (using the above method and apparatus) varies from the desired velocity of the motor. Since motor torque is proportional to motor current in a servo moto
Kraft Steven M.
Sagues Paul
Wiggers Robert T.
Berkeley Process Control, Inc.
Fletcher Marlon
Jaffer David H.
Nappi Robert E.
Pillsbury & Winthrop
LandOfFree
Touch calibration system for wafer transfer robot does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Touch calibration system for wafer transfer robot, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Touch calibration system for wafer transfer robot will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2520759