Totally implantable hearing system

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06807445

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a totally implantable hearing system for rehabilitation of hearing disorders, comprising at least one sensor for picking up at least airborne sound and converting it into electrical signals, an electronic module including electronic means for audio signal processing and amplification, an output-side actuator arrangement for stimulation of the middle or inner ear, and an electrical power supply unit.
2. Description of Related Art
The expression “hearing disorder” is defined here as including all types of inner ear damages up to complete postlingual loss of hearing or prelingual deafness, combined inner ear and middle ear damages, and temporary or permanent noise impressions (tinnitus).
In recent years, rehabilitation of sensorineural hearing disorders with partially implantable electronic systems has acquired major importance. In particular, this applies to the group of patients in which hearing has completely failed due to accident, illness or other effects or in which hearing is congenitally non-functional. If, in these cases, only the inner ear (cochlea), and not the neural auditory path which leads to the brain, is affected, the remaining auditory nerve can be stimulated with electrical stimulation signals. Thus, a hearing impression can be produced which can lead to speech comprehension. In these so-called cochlear implants (CI), an array of stimulation electrodes is inserted into the cochlea. This array is controlled by an electronic system which is surgically embedded as a hermetically sealed, biocompatibly encapsulated electronic module in the bony area behind the ear (mastoid). The electronic system contains essentially only decoder and driver circuits for the stimulation electrodes. Acoustic sound reception, conversion of this acoustic signal into electrical signals and further processing of the latter, always takes place externally in a so-called speech processor which is worn outside on the body. The speech processor superimposes the preprocessed signals, properly coded, on a high frequency carrier signal which, via inductive coupling, is transmitted (transcutaneously) to the implant through the closed skin. The sound-receiving microphone is always located outside of the body and, in most applications, in a housing of a behind-the-ear hearing aid worn on the external ear. The microphone is connected to the speech processor by a cable.
In addition to rehabilitation of congenitally deaf persons and those who have lost their hearing using cochlear implants, for some time there have been approaches to offer better rehabilitation than with conventional hearing aids by using partially or totally implantable hearing aids for patients with a sensorineural hearing disorder which cannot be surgically corrected. The principle consists, in most embodiments, in stimulating an ossicle of the middle ear or, directly, the inner ear via mechanical or hydromechanical stimulation and not via the amplified acoustic signal of a conventional hearing aid in which the amplified acoustic signal is supplied to the external auditory canal. The actuator stimulus of these electromechanical systems is accomplished with different physical transducer principles such as, for example, by electromagnetic and piezoelectric systems. The advantage of these devices is seen mainly in a sound quality which is improved compared to that of conventional hearing aids, and, for totally implanted systems, in the fact that the hearing prosthesis is not visible. Such partially and totally implantable electromechanical hearing aids are described, for example, by H. P. Zenner et al. “First implantations of a totally implantable electronic hearing system for sensorineural hearing loss”, in HNO Vol. 46, 1998, pp. 844-852; H. Leysieffer et al. “A totally implantable hearing device for the treatment of sensorineural hearing loss: TICA LZ 3001”, in HNO Vol. 46, 1998, pp. 853-863; and H. P. Zenner et al. “Totally implantable hearing device for sensorineural hearing loss”, in The Lancet Vol. 352, No. 9142, page 1751.
Many patients with inner ear damage also suffer from temporary or permanent noise impressions (tinnitus) which cannot be surgically corrected and for which, to date, there are no approved drug treatments. Therefore, so-called tinnitus maskers have become known. These are small, battery-driven devices which are worn like a hearing aid behind or in the ear and which, by means of artificial sounds which are emitted, for example, via a hearing aid speaker into the auditory canal, psychoacoustically mask the tinnitus and thus reduce the disturbing noise impression, if possible, to below the threshold of perception. The artificial sounds are often narrow-band noise (for example, third-band noise). The spectral position and the loudness level of the noise can be adjusted via a programming device to enable adaptation to the individual tinnitus situation as optimally as possible. In addition, the so-called retraining method has been developed recently in which, by combination of a mental training program and presentation of broad-band sound (noise) near the auditory threshold, the perceptibility of the tinnitus in quiet conditions is likewise supposed to be largely suppressed. These devices are also called “noisers”.
In the two aforementioned methods for hardware treatment of tinnitus, hearing aid-like, technical devices must be carried visibly outside on the body in the area of the ear. They stigmatize the wearer and, therefore, are not willingly worn.
Recently, partially and totally implantable hearing systems for rehabilitation of inner ear damage have been introduced in clinical use. In the case of the totally implantable hearing system TICA® (H. P. Zenner et al. (“Totally implantable hearing device for sensorineural hearing loss”, The Lancet, Vol. 352, November 1998, No. 9142, page 1751) an audio sound sensor (microphone) is used which is subcutaneously inserted in the rear bony wall of the auditory canal as disclosed in more detail in U.S. Pat. Nos. 5,814,095 and 5,999,632. First clinical experiences with this system show that the own voice as well as other body sound vibrations, such as chewing and swallowing noise, are clearly and disturbingly loudly perceived by some patients. This is due to the fact that not only airborne signals incident from the exterior are picked up by the audio sensor, but also body sound-induced signals are acting on the audio sensor by bone transmission and, upon amplification by the implanted hearing system, likewise are transmitted to the inner ear. In view of this mixture of the individual input signal components the familiar and desirably natural sound pattern of the own voice changes in the case of these patients, or the amplified body sound portion is acting as interference which may be masking, whereby the hearing and understanding of external language is impeded. This effect cannot be countered in prior hearing implants because the implanted audio sensor and the input-side functioning thereof cannot be influenced. This disturbing effect likewise is to be expected in future totally implantable cochlea implants since it can impede the hearing rehabilitation required for such implants in a still more pronounced manner than in the case of electromechanical implants for patients with defective hearing. Perhaps, a way out would be an implantation of the audio sensor in a manner in which this sensor is completely decoupled from body sound, by using proper body sound-insulating implant materials and/or structural features in the audio sensor itself. At least theoretically the described negative effect would be eliminated thereby. However, all body sound-induced components of the own voice, such as particularly mechanical laryngeal oscillations which are indispensable for a familiar, natural sound pattern of the own voice, likewise are suppressed thereby.
SUMMARY OF THE INVENTION
In order to increase the acceptance of totally implantable hearing systems using actoric output stimuli of any type, a technical

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Totally implantable hearing system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Totally implantable hearing system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Totally implantable hearing system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3262888

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.