Total synthesis of antitumor acylfulvenes

Organic compounds -- part of the class 532-570 series – Organic compounds – Oxygen containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C568S374000, C568S377000, C568S379000, C568S817000, C568S819000, C568S823000

Reexamination Certificate

active

06717017

ABSTRACT:

BACKGROUND OF THE INVENTION
Natural products from plants and microorganisms have proven to be a major source of active anticancer agents and lead compounds for cancer chemotherapy. Mushrooms of the class Basidiomycetes are an exception. Although they occur widely and some are well known to contain a variety of highly poisonous substances, only
Omphalotus illudens
(jack o'lantern mushroom) is known to produce promising anticancer compounds. These are the sesquiterpenes illudin S and illudin M. The illudins are extremely cytotoxic compounds but have a low therapeutic index particularly in solid tumor systems. However, modification of their structures has yielded several analogs, which possess a greatly improved therapeutic index. Remarkable efficacy has been observed in tests on mouse xenografts of leukemias and various solid tumors.
First and second generation analogs, for example, dehydroilludin M and acylfulvene, have been described (WO 91/04754). A promising compound is a third generation analog hydroxymethylacylfulvene (HMAF). In tests with MV 522 metastatic lung carcinoma xenografts in nude mice, complete tumor regression was observed in all animals. HMAF also exhibited outstanding activity against breast (MX-1), colon (HT-29) and skin cancers.
The structures of illudin S and illudin M were first published in 1963 (McMorris et al.,
J. Am. Chem. Soc.
85:831 (1963)). Until recently only one total synthesis of these compounds had been reported (Matsumoto et al.,
Tetrahedron Lett.
1171 (1970)). This synthesis involved Michael addition of a cycylopropane intermediate to an appropriately substituted cyclopentenone. The resulting product was then transformed into an intermediate which could undergo aldol condensation to form illudin's six-membered ring. A number of further reactions were required to complete the synthesis.
Padwa et al., (
J. Am. Chem. Soc.
116: 2667 (1994)), have published a synthetic approach to the illudin skeleton using a dipolar cycloaddition reaction of a cyclic carbonyl ylide dipole with cyclopentenone to construct the six-membered ring. Kinder and Bair (
J. Org. Chem.
59:6955 (1994)), have also employed the Padwa methodology to synthesize illudin M. However, these syntheses are long and not well suited for making acylfulvenes on a large scale.
Thus, a continuing need exists for improved methods for synthesizing acylfulvenes.
SUMMARY OF THE INVENTION
The present invention provides a method of synthesizing compounds of formula (I):
wherein R and R′ are independently (C
1
-C
4
)alkyl, preferably methyl. According to the invention, a method is provided of synthesizing a compound of formula (V), a preferred intermediate in the synthesis of compounds of formula (I):
comprising the steps of coupling a cyclopentanone of formula (II):
wherein R
4
is —O—C(R
9
)
2
O(R
9
), wherein R
9
is (C
1
-C
4
)alkyl, preferably methyl;
with a cyclic carbonyl ylide dipole of formula (III):
to form a compound of formula (IV):
and treating compound (IV) with base to form a ketone of formula (V).
The present method further may further comprise the steps of dihydroxylating the ketone to yield a compound of formula (VI):
and treating the compound of formula (VI) with a removable 1,2-diol protecting reagent to yield an intermediate of formula (VII):
wherein X is a removable 1,2-diol protecting group. Protecting groups may be introduced by forming a cyclic acetal by treatment with an aldehyde or ketone such as acetone, formaldehyde, acetaldehyde or benzaldehyde. For example, an isopropylidene derivative (acetonide) may be introduced by reaction with acetone. Preferably, the isopropylidene group is introduced by acid-catalyzed exchange with 2,2-dimethoxypropane.
The method further comprises the steps of treating compound (VII) with RMgCl, where R is (C
1
-C
4
)alkyl, to yield a Grignard product of formula VIII:
and cleaving the oxybridge to yield a diol of formula (IX):
The method further comprises the step of removing the diol protecting group to yield a tetraol of formula (X):
The tetraol is then converted to an orthoester of formula (XI):
wherein R″ is (C
1
-C
3
)alkyl; and the cis hydroxyls are eliminated to yield a dienone of formula (XII):
The method further comprises the steps of reducing the compound of formula (XII) to convert the ketone to an alcohol, under conditions which dehydrate the resulting alcohol to yield a fulvene of formula (XIII):
The fulvene of formula (XIII) is then oxidized to yield a compound of formula (I):
The present invention also provides a method of synthesizing a compound of formula (XVII):
wherein R
1
is OH, R
2
is H, and R′ is (C
1
-C
4
)alkyl, preferably methyl.
According to the present invention, a method is provided of synthesizing a diketone of formula (XIII), a preferred intermediate in the synthesis of compounds of formula (XVII):
comprising the steps of
(a) cleaving the oxybridge in the compound of formula (XIV):
to yield a diketone of formula (XIII).
The method further comprises the steps of
(b) protecting the hydroxyl group in the compound of formula (XIII) with a removable hydroxyl protecting group X; and
(c) introducing a double bond in the five-membered ring to yield a compound of the formula (XV):
wherein R′
1
and R′
2
together are keto; and
X is a removable hydroxyl protecting group. Removable hydroxyl protecting groups may be introduced by reaction with a suitable reagent, such as a reagent of the formula ((C
1
-C
4
)alkyl)
3
SiCl, including triethylsilyl (TES) chloride, trimethylsilyl (TMS) chloride, t-butyldimethylsilyl (TBDMS) chloride, dimethyl (1,2,2-trimethylpropyl)silyl chloride, or tris(isopropyl)silyl; and methoxymethyl chloride, &bgr;-methoxyethoxymethyl chloride, and isobutylene.
The method further comprises the steps of
(d) reducing both keto groups to yield hydroxy groups under conditions that yield a compound of formula (XVI):
(e) eliminating the cyclopentenol hydroxyl group; and
(f) oxidizing the cyclohexanol hydroxyl group and removing hydroxyl protecting group X to yield a compound of formula (XVII):
wherein R
1
is OH and R
2
is H.
The method additionally comprises the step of
(g) following step (d), treating the alcohol with mesyl chloride in the presence of a base to produce a mesylate of the formula (XVIII):
wherein R″
1
is —OX, R″
2
is absent and R is H.
The present invention further provides a method of synthesizing compounds of the formula (XXIII):
wherein R′
1
and R′
2
together are ethylenedioxy, and R′ is (C
1
-C
4
)alkyl, preferably methyl.
According to the present method, the carbonyl group of the compound of formula (XIII) is converted to an acetal group to yield a compound of formula (XIX):
The method further comprises the steps of
(b) protecting the hydroxyl group in the compound of formula (XIX) with a removable hydroxyl protecting group X; and
(c) introducing a double bond in the five-membered ring to yield a compound of the formula (XX):
wherein X is a removable hydroxyl protecting group.
The method further comprises the steps of
(d) reducing the keto group to yield a hydroxy group under conditions that yield a compound of formula (XXI):
(e) eliminating the cyclopentenol hydroxyl group;
(f) removing hydroxyl protecting group X to yield a compound of formula (XXII):
and
(g) oxidizing the cyclohexanol hydroxyl group to yield a compound of formula (XXIII):
The method further comprises the step of
(h) following step (d), treating the alcohol with mesyl chloride to produce a mesylate of the formula (XXIV):
With respect to both mesylates of formulas (XVIII) and (XXIV), the mesylates are relatively unstable and convert to fulvenes upon standing. Removal of the protecting group X and oxidation yield compounds of formulas (XVII) and (XXIII), respectively.
The invention also provides novel compounds of formula I-XXIV, all of which are useful as intermediates in the synthesis of 6-substituted acylfulvene analogs (6-substituted acylfulvenes) as disclosed, for example, in Kelner et al., U.S. Pat. No. 5

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Total synthesis of antitumor acylfulvenes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Total synthesis of antitumor acylfulvenes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Total synthesis of antitumor acylfulvenes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3236283

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.