Torsion vibration damper and process for its manufacture

Rotary shafts – gudgeons – housings – and flexible couplings for ro – Torque transmitted via flexible element – Coil spring

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C464S064100, C192S205000, C192S215000

Reexamination Certificate

active

06364775

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a torsion vibration damper with a primary plate and a secondary plate. The invention likewise relates to a process for the manufacture of this type of torsion vibration damper. Such torsion vibration dampers are frequently used in particular with clutches.
SUMMARY OF THE INVENTION
The object of the invention is to provide a new type of torsion vibration damper which can be manufactured with consistent improved quality, more simply, and therefore more economically. The new design will achieve greater flexibility and adaptability of the torsion vibration damper to suit individual customer requirements.
As a solution, the invention is a torsion vibration damper with a primary plate and a secondary plate. The primary plate encompasses a primary plate, which transfers a torque movement from the primary plate to the secondary plate. The use of a plate for the transfer of the torque guarantees simple manufacture of this module, since recourse need only be made to the machining processes necessary for such plates. In particular, it is also possible to create such a plate so that metal-removing machining is not required.
The torque transfer function of the primary plate makes it possible to do without other modules such as webs, levers, etc., for transferring the torque. The primary plate can be formed so that it can adopt the entire torque-transferring function. In particular, the primary plate can have at least one support area with a surface running perpendicular to the direction of rotation of the torsion vibration damper. This area is created by the forming of the primary plate. By means of such a support area, however it may be designed in specific terms. Forces can be transferred in the peripheral direction from the primary plate. This can be achieved to advantage, by means of a spring arrangement encompassing thrust pistons and springs, arranged between the primary and secondary plates. This then makes it possible to do without additional modules which form such support areas.
The primary plate is formed as a module symmetrical to the main axis of rotation of the torsion vibration damper. This may involve rotational, axial, or mirror symmetry. An arrangement such as this inherently increases the stability of the primary plate, and, guarantees the simple manufacture of the torsion vibration damper. This result in turn minimizes, the risk of possible imbalances and their time-consuming rectification. In addition, it allows for a single-unit module to be positioned and secured in a more simple manner than other modules, such as, for example, an additional rim, than would be the case with multi-component modules.
Furthermore, the primary plate may feature tangential friction surfaces, which can be arranged between the cut-outs of the primary plate. The term “tangential friction surfaces” is understood to mean the surface areas of the primary plate which feature at least one component in the circumferential direction, and are in frictional contact with a torque-absorbing module, such as the thrust piston of a spring arrangement.
Because of the combination of tangential friction surfaces and cut-outs with support areas, the primary plate is in a position to transfer outwards or accommodate the entire torque from the primary plate. This can be done in conjunction with thrust pistons, which are in contact with the tangential friction surfaces and in each case are pressed pair by pair apart from one another by springs and pressed against the support areas. The thrust pistons can be formed from a full injection molding or from a fibre-reinforced injection molding, and provided with ribs. With proper thrust piston material and a proper adjustment angle of the tangential friction surfaces in relation to the circumferential direction, the torsion vibration damper can be designed so that it is possible to do without a lubricant material in the area of the thrust pistons. This result means that potential sealing problems can be circumvented.
The primary plate can have a cylindrical shoulder area to provide a seal against the extrusion of grease at the primary plate of the spaces formed by the tangential friction surfaces and the cut-outs. A module, such as a sealing ring, may be secured to this shoulder area in a relatively uncomplicated manner.
The cylindrical shoulder area is designed as a flange. The sealing ring can be secured to the flange in a simple manner, such as by clipping on. In addition, a flange of this nature also allows additional modules, such as an additional rim to be secured to the primary plate, to be stabilized in the axial direction, such as parallel to the main axis of rotation of the torsion vibration damper.
It may be necessary for the primary plate in the cylindrical shoulder area to undergo subsequent shaping machining, such as metal-removing machining. This depends on the need for stability of the connection between the primary plate and the sealing ring. Subsequent machining, the primary plate may need to be clamped. This will not incur any change to the advantage provided by the primary plate towards minimizing the number of components and relatively easy manufacture.
To insure stability, the primary plate may be supported radially inwards on a central flange or shaft, e.g. the drive shaft of a motor. In this situation, it is necessary for subsequent forming machining to be undertaken of a radial internal part of the primary plate. Subsequent treatment does not create any impediment either in respect of the advantage according to the invention of the use of a primary plate, and can be reduced to the minimum degree necessary.
The invention is not restricted to the use of a plate in the narrower sense. Rather, any plate-type structure may serve as the primary plate, which has been rendered in the desired shape by machining. In this context, it is self-evident that the primary plate may in addition undergo additional processing stages, and processing stages which involve the removal of metal or of material.
In one forming stage, an angled area may be created at the primary plate which is arranged essentially parallel to the main axis of rotation of the torsion vibration damper. Angled areas provide direct stabilization of the primary plate. Furthermore, an additional rim may be brought in contact with these angled areas. This creates a relatively large contact area between the additional rim and the primary plate, which serves to provide further stabilization of the torsion vibration damper.
The side of the angled area which is turned away from the additional rim can be used as a tangential friction surface for the torque transfer or damping. It is also possible to provide for cut-outs in the angled areas which point radially inwards. In this context, it is possible in one work process to prepare the angled area to support the additional rim and the tangential friction surfaces and the support areas for the transfer of torque and for damping.
Therefore, there is increased stability in the preparation of an angled area on a plate of a torsion vibration damper which supports an additional rim, irrespective of its properties for transferring torque.
The additional rim, after being set on the angled area, can be crimped onto the primary plate by spot welding, or welded in spot fashion. This allows for a stable yet nevertheless sufficiently flexible connection to be established between the additional rim and the primary plate.
In addition, the arrangement described between the additional rim and the primary plate guarantees simple manufacture. Only the radial areas of the additional rim on the interior, coming in contact with the primary plate, requires a corresponding precision of fit. The same applies to the radial outer side of the angled areas of the primary plate. To this extent, this arrangement allows for a restriction to a minimum of the calibrated subsequent machining of the two modules prior to their assembly. This restriction is namely to the areas described. It is possible under cer

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Torsion vibration damper and process for its manufacture does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Torsion vibration damper and process for its manufacture, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Torsion vibration damper and process for its manufacture will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2904331

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.