Surgery – Diagnostic testing – Detecting brain electric signal
Reexamination Certificate
2001-10-05
2003-04-15
Hindenburg, Max F. (Department: 3736)
Surgery
Diagnostic testing
Detecting brain electric signal
C600S544000
Reexamination Certificate
active
06549805
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates generally to a biofeedback medical diagnostic system. More particularly, the system of the invention utilizes remote noninvasive biofeedback signal between the operator, the patient, and the CPT (central processing and telemetry) device to determine a pathological condition of the patient. The biofeedback signal is generated subconsciously and is based on device enhanced intuition.
A variety of medical diagnostic systems are known in the art to determine the patho-physiological status of the patient in general and to diagnose a variety of ailments and their state of progression. A simple example of such a system is a visual diagnostic device based on critical fusion frequency such as described in the U.S. Pat. No. 6,129,436 by Treskov or the Russian Patents No. 339,280 and 1,076,087. In a self-administered test, the patient can gradually increase the frequency of a blinking light until the point of fusion is reached and the patient is unable to distinguish between individual bursts of light. The frequency of that fusion is indicative of the state of the patient's nervous system and can be tracked over time to monitor its changes. An improvement is described in the Russian Patent No. 814,337 wherein the test is administered before and after a physical exercise. Such systems have generally limited ability to indicate the variety of patient's conditions due to the fact that only a part of the nervous system responsible for processing a visual stimulus is involved with the test. Such complex phenomenon as a change in working ability or the state of tiredness of a patient frequently results from other changes in the nervous system that would go undetected by such a device.
The situation of playing a dynamic game is used in various psycho-physiological evaluation devices to determine the state of a variety of body functions. Examples include such functions as attention, memory and vision (Russian Patent No. 825,001); sensing and motor reactions (Russian Patent No. 850,043); ability to choose (Russian Patent No. 929,060); the function of following a moving object (Russian Patent No. 827,029); ability to find the ways out of the difficult situation (Russian Patent No. 878,258) and even the predictive abilities (Russian Patent No. 839,488).
A more comprehensive biofeedback device is described by Schweizer in the U.S. Pat. No. 4,195,626 and includes application of a variety of audible, visual, electrical or tactile stimuli in a specially designed biofeedback chamber. Moreover, a microprocessor controlled rhythmical pattern of these stimuli is proposed and is adjusted based on the patient's own reactions.
Ross et al. in the U.S. Pat. No. 4,690,142 suggests electro-neurological stimulation of specifically described places on the skin of the patient. Production of such tactile stimulation of the skin is used to generate electrical characteristics of the organism responsive to a particular condition. The system of the invention is also used to train the organism to change its reaction to the stimuli by concentrating on increasing or inhibiting the tactile sensation.
An even more sophisticated system involves detecting the patient's electrical brainwaves via electroencephalogram or EEG as measured from a number of electrodes attached to the patient's scalp. Several examples of EEG based biofeedback devices are worth mentioning here among a large number of such systems described in the prior art.
A multiple channel biofeedback computer is described in the U.S. Pat. No. 4,031,883 by Fehmi et al. which contains a number of monopolar electrical contacts applied to the scalp and the body of the patient and a computer for collecting, filtering and amplifying the electrical signals therefrom. The overall feedback signal is then presented back to the patient to create awareness of the function being monitored of for other purposes.
Ross et al. in the U.S. Pat. No. 4,800,893 describes a kinesthetic physical movement display in which a number of electrodes feed their respective signals to an EEG apparatus equipped with a video display. Generation of kinesthetic physical movements allows the user to produce desired thought patterns.
A method for treating a patient using an EEG feedback is described by Ochs in the U.S. Pat. No. 5,365,939 and involves selecting a reference site for determining a brainwave frequency and entraining it in both directions until a predetermined stop point is reached. Flexibility assessment is then conducted with respect to the ability of the patient to change the brainwave frequency.
A method and device for interpreting concepts and conceptual thoughts from a brainwave date of a patient and for assisting in diagnosis of a brainwave dysfunction is described is proposed by Hudspeth in the U.S. Pat. No. 5,392,788. A system is described to include a transducer for transmitting a stimuli to the patient, EEG transducers for recording brainwave signals, and a computer to control signal presentation, EEG signal recording and analysis. A comparison is made between the recorded EEG signals and a model of conceptual perceptional and emotional thought or as an alternative to the known EEG signals from healthy individuals to diagnose a brain dysfunction.
A method for determining the intensity of focused attention is proposed by Cowan et al. in the U.S. Pat. No. 5,983,129 and includes obtaining a frontal lobe brainwave EEG signal and subtracting it from a separately obtained reference EEG signal to produce the attention indicator signal.
Finally, an electroencephalograph based biofeedback system is described by Freer in the U.S. Pat. No. 6,097,981 in which a computer animation is maintained by the computer and presented to the patient while EEG response signals are simultaneously being obtained and analyzed. Results of the analysis are then used to control the animation. A provision is made to send the EEG signals from the head of the patient or user to the machine by remote infrared transmitter.
All the above systems suffer from a number of common limitations, which stem from their dependence on the conscious state of mind of the patient. Another limitation is that the patient himself is used to interpret the biofeedback signal rather then an independent entity such as an operator. Finally, hardware is used to obtain the EEG signals and transmit it via a wire or infrared method to the main data collection and computing apparatus.
One further improvement in the accuracy of biofeedback analysis is described in the Russian Patent No. 759,092 in which various biofeedback signals are assigned a certain value of relative weight by a dedicated designation unit acting based on individual characteristics of each patient or a test subject. Varying these weight factors allows the apparatus to customize the results of analysis for each individual user.
The use of magnetic and electromagnetic fields is also known in the art to remotely and non-invasively assess certain conditions of a patient or to influence his state of fatigue and abilities to perform certain functions.
Farmer et al. has described a device for monitoring a magnetic field emanating from an organism in the U.S. Pat. No. 5,458,142. It includes a magnetic field sensor containing a ferromagnetic core surrounded by a multi-turn fine wire. The sensor is used to record the magnetic fields of an organism for diagnostic purposes as well as to control a magnetic field generator in order to produce a therapeutic magnetic field complimentary to that of an organism.
A bio-magnetic analytical system is described by Zanakis et al. in the U.S. Pat. No. 4,951,674 and includes a number of fiber-optic magnetic sensors to obtain information about the magnetic field from various tissues in the body including the brain.
A device for influencing an organism is proposed by Hein in the U.S. Pat. No. 5,108,361 and involves exposing the patient to a number of short pulsed signals supplied with increasing or decreasing frequency to stimulate the cerebral waves.
U.S. Pat. No. 5,7
Akimov Anatoly E.
Elistratov Oleg M.
Nesterov Vladimir I.
ClinicTech Inc.
Hindenburg Max F.
Leschinsky Boris
Natnithithadha Navin
LandOfFree
Torsion diagnostic system utilizing noninvasive biofeedback... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Torsion diagnostic system utilizing noninvasive biofeedback..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Torsion diagnostic system utilizing noninvasive biofeedback... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3051388