Torque transfer device

192 clutches and power-stop control – Clutches – Plural clutch-assemblage

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C074S330000

Reexamination Certificate

active

06668994

ABSTRACT:

TECHNICAL FIELD
The invention relates to a torque transfer device with at least one first and at least one second clutch device.
BACKGROUND
A torque transfer device is in the sense of the present invention in particular a device which under predetermined conditions can convert a rotary characteristic of a rotationally movably mounted component part, such as input shaft, into an identical or different rotary characteristic of another rotary mounted component part such as output shaft, wherein if required these component parts can be coupled and uncoupled. More particularly it is proposed that the torque transfer device can be shifted into different shift positions.
A rotary characteristic is in the sense of the present invention more particularly a characteristic value which at least in part describes the rotational status of a rotary mounted component part, such as shaft. The rotary characteristic is in particular a torque or speed.
A torque transfer device has in the sense of the present invention more particularly a clutch device and/or a transmission device and/or a torque converter device or the like.
Devices which can transfer torque and have clutch devices are already known.
The object of the invention is to provide a torque transfer device which is designed technically different.
According to one particular aspect the object of the invention is to provide a torque transfer device having several clutches which can be actuated with structurally low expense cost-effectively and with high operational reliability.
According to a particular aspect the object of the invention is to design a torque transfer device having a power shift clutch and a transmission device so that the energy loading of the power shift clutch as well as the synchronising times and the jolts during shifting of the transmission device are low.
This is achieved through a torque transfer device or through a control device for controlling a torque transfer device or through a method for operating a torque transfer device which has at least one feature of the features which are described in the following description and in the claims or are shown in the drawings.
This is further achieved through a method for operating a torque transfer device as disclosed and illustrated herein.
Further preferred embodiments of the invention form the subject of the sub-claims.
According to the invention in particular a torque transfer device is provided which has at least a first clutch device, more particularly designed as a power shift clutch, as well as at least a second clutch device, more particularly designed as a start-up clutch. These clutch devices each have an input device as well as an output device which is mounted rotationally movable relative to the input device at least when the clutch device is disengaged. Where necessary the input devices of the different clutch devices are connected together rotationally secured, and preferably detachable.
The input device of the first clutch device has in particular a clutch disc and where necessary further component parts and the output device of the first clutch device preferably has a clutch cover and/or a flywheel and/or a pressure plate and/or a toothed wheel and where necessary further component parts and/or is coupled to same secured against rotation.
The input device of the second clutch device has in particular a clutch cover and/or a flywheel and/or a pressure plate and where necessary further component parts and/or is coupled to this rotationally secured and the output device of the second clutch device preferably has a clutch disc.
A clutch cover and/or a flywheel and/or a pressure plate of the first and/or second clutch device is preferably made from cast iron.
The flywheel is not restricted only to wheel-shaped component parts but can be shaped differently. A flywheel is in particular a flywheel mass.
The first and second clutch device are mounted in a drive train, preferably of a motor vehicle, namely between a drive side on which an internal combustion engine preferably acts as the vehicle drive, and an output side on which a vehicle drive axle is preferably provided.
According to the invention the mass and/or inertia mass of at least one of the output devices is greater than the mass and/or inertia mass of the associated input device of the same clutch device. More particularly the mass and/or inertia mass of the first output device of the first clutch device is greater than the mass and/or inertia mass of its first input device and the mass and/or inertia mass of the second input device of the second clutch device is greater than the mass and/or inertia mass of the second output device of the second clutch device.
In the sense of the present invention a mass is a mass and/or an inertia mass.
According to the invention in particular a torque transfer device is provided with a first clutch device which has at least one first clutch disc as well as at least one first flywheel body, as well as with a second clutch device which has at least a second clutch disc as well as at least a second flywheel body. The clutch discs can rotate relative to the flywheel bodies or masses dedicated to each identical clutch device at least in at least partly opened shift position of the relevant clutch device. The first and second clutch device are each mounted inside a drive train, more particularly connected in parallel, namely between a drive side on which an internal combustion engine is preferably mounted, and an output side on which a vehicle drive axle is preferably mounted. At least one of the clutch discs is facing the output side, whilst the flywheel mass or flywheel dedicated to the same clutch device faces the drive side. The first clutch disc of the first clutch device preferably faces the drive side and the second clutch disc of the second clutch device faces the output side whilst the flywheel masses or wheels each associated with these relevant clutch discs face each other side.
A clutch device is in the sense of the present invention in particular a device in which in at least two different shift positions a different ratio is provided from at least one input signal or input rotary characteristic such as torque or speed, to at least one output side or output rotary characteristic wherein this device is designed in particular so that in these different shift positions the ratio of the useful power supplied to this device, such as mechanical or electrical or pneumatic or hydraulic power, to the useful power discharged from the device is different. The clutch device can be shifted in particular into at least one first shift position in which a signal or rotary characteristic is transferred substantially unchanged, as well as into at least a second shift position in which a rotary characteristic is substantially not transferred, and where necessary into at least a third shift position in which a rotary characteristic is transferred in part or restricted to a predetermined value.
The clutch device is designed with or without a power branch and self-adjusting or non-self-adjusting.
A clutch device is in the sense of the present invention self-sustaining or depressed or designed in some other way wherein self-sustaining is to mean that the clutch device, if it is not actuated, is held in a substantially closed shift position by way of example by means of an energy accumulator, such as spring device or the like, and wherein depressed is to mean that the clutch device if it is not actuated is held in a substantially opened shift position by way of example by means of an energy accumulator such as spring device.
The clutch device can transfer a signal or rotary characteristic in a positive locking, friction-locking or other way and has where necessary self-resilient clutch linings and/or a spring and/or damper device.
The clutch device is designed more particularly as a start-up clutch and/or power shift clutch and/or converter lock-up clutch and has in particular a friction clutch with two or more friction faces and/or a turning set clutch and/or a multi-plate clutch

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Torque transfer device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Torque transfer device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Torque transfer device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3170088

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.