Machine element or mechanism – Gearing – With fluid drive
Reexamination Certificate
2002-01-08
2002-11-05
Wright, Dirk (Department: 3681)
Machine element or mechanism
Gearing
With fluid drive
Reexamination Certificate
active
06474195
ABSTRACT:
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
BACKGROUND OF THE INVENTION
Power is conventionally transmitted from the engine of an automobile or a truck through one of two conventional combinations of power transmission devices. One combination is a mechanically operated friction clutch and a manually shifted countershaft transmission. The other combination is a hydrodynamic drive, typically a torque converter, and an automatically shifted planetary gear transmission.
The clutch and manually shifted countershaft transmission combination includes a friction clutch that is mounted to a flywheel on the vehicle's engine. An input shaft of the countershaft transmission engages and is driven by a driven component of the clutch, conventionally a disk that frictionally engages the flywheel. Countershaft transmissions have meshing gears mounted on parallel shafts. The speed ratio and torque ratio provided by the transmission depends on the ratios of the meshing pairs of gears through which power is transmitted from the input shaft of the transmission to the output shaft. A countershaft transmission is conventionally either a sliding gear transmission or a constant mesh transmission. In a sliding gear transmission, gears are moved along a shaft into or out of engagement with another gear to change the path through which power is transmitted through the transmission and thereby changes the transmission ratios. In a constant mesh transmission, gears are constantly in mesh and positive engagement or friction devices couple the gears to a shaft of the transmission. In either type of transmission, ratios are changed by operation of a shifter mechanism that moves gears in the case of a sliding gear transmission or operates friction or positive engagement devices in the case of a constant mesh transmission.
The hydrodynamic drive and automatically shifted planetary gear transmission combination is driven by a torque converter mounted to a flywheel on an engine. An input shaft of a planetary gear transmission engages and is driven by the torque converter. The planetary gear transmission conventionally has planetary gear assemblies aligned along the axis of the input shaft. Power is transmitted through the planetary gear assemblies by fixing one of the three components of the assembly, the sun gear, the plane gear carrier, or the ring gear, against rotation and applying power to one of the other two components to drive the remaining component. The drive ratio of the transmission is determined by the diameters of the gears of the planetary gear assemblies through which power is transmitted. The path through which power is transmitted through planetary gear assemblies is changed by hydraulically operated devices. A hydraulically operated brake having a band that is mounted to the transmission case and surrounds the ring gear of a planetary gear assembly is conventionally used to secure the ring gear to the transmission case. When the ring gear is secured to the transmission case, power may be transmitted through the sun and planet gear carrier of the planetary gear assembly. Hydraulically operated clutch pack assemblies having adjacent disks that alternately engage a surrounding case and an inner splined shaft are used to selectively couple and uncouple the shaft to the case by applying or removing a hydraulic pressure to the assembly. Hydraulically operated frictional engagement devices, brake bands and clutch packs, provide control of the performance of the transmission. Frictional engagement devices that engage and disengage to change the ratio of planetary gear transmissions can provide a high level of mechanical reliability. Because those devices are actuated by hydraulic pressure, planetary gear transmissions are conventionally shifted automatically by controlled application of hydraulic pressure to frictional engagement devices in the transmission.
These conventional power transmitting combinations have been the bases from which power transmitting combinations and devices have been specifically designed and constructed for use in racing. Racing that primarily requires acceleration, in particular, requires transmissions that are more durable and that must satisfy different requirements than do conventional automotive transmissions. In acceleration racing, such as drag racing, either the maximum available power or the maximum power that can be used to accelerate the car is transmitted through the driveline of the racecar throughout the race. The transmission must provide a high degree of mechanical reliability both in changing gear ratios and in structural reliability. Failure to quickly change gears and failure of a component of the transmission are both causes of lost races.
Cars having the most powerful engines used in drag racing have long required transmissions specifically constructed to transmit the large power created by their engines. Specially constructed planetary gear transmissions that have large and high strength gears and other components have been used in various forms of racing, including drag racing for many years. These transmissions, manufactured by Lenco, Inc. and others, have used high strength planetary gear assemblies with mechanically operated friction engagement devices to provide both reliable changes of transmission ratios and structural reliability.
The most powerful cars for which planetary gear transmissions were specially constructed have conventionally driven these transmissions by clutches that are constructed to provide a significant amount of control of the rate at which the high power generated by the engines of these cars is applied to the driveline of the racecar. The planetary gear transmissions specially constructed for racing and used in the most powerful racecars are coupled to the engine differently than planetary gear transmissions used in conventional automotive applications in that they have been driven by clutches and have conventionally been shifted by mechanically or pneumatically, rather than hydraulically, actuated mechanisms.
While racing planetary gear transmissions provide mechanically reliable gear ratio changes and structural reliability, that reliability comes at the price of requiring power to drive the large and heavy components of the transmission. A significant amount of power is required to drive heavy components of racing planetary gear transmissions. The power required to drive racing planetary gear transmissions is not a significant disadvantage to racecars having the highest power engines. However, the power required to drive these transmissions is a significant disadvantage to racecars that are limited to engines that do not produce more power than the racecar can utilize to increase performance. For such cars, decreasing the power consumed by driving components of the car increases the power that can be used to drive the car and to thereby increase performance.
Countershaft racing transmissions that require less power to drive than racing planetary gear transmissions have recently been developed. In addition to requiring less power to drive than planetary gear racing transmissions, racing countershaft transmissions are lighter than planetary gear racing transmissions. These countershaft racing transmissions are generally constant mesh transmissions having mechanical engagement devices, such as positive jaw clutches, that mechanically couple and uncouple components of the transmission to change the torque drive path through the transmission. These transmissions are sometimes referred to a “clutchless” transmissions because they do not use clutch packs that are used by planetary gear transmissions to change gear ratios. Countershaft transmissions have been used in racecars that have engines that, while producing significant power, do not produce more power than can be used to drive the racecar. A primary objective for equipment used in the driveline of such cars, including transmissions, is to consume as little power as possible and thereby make as much power as possible available to dr
Bruno's Automotive Products, Inc.
McAndrews Held & Malloy Ltd.
Wright Dirk
LandOfFree
Torque converter drive and countershaft transmission drive... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Torque converter drive and countershaft transmission drive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Torque converter drive and countershaft transmission drive... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2954389