Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Electric vehicle
Reexamination Certificate
2000-05-09
2001-08-21
Nguyen, Tan (Department: 3661)
Data processing: vehicles, navigation, and relative location
Vehicle control, guidance, operation, or indication
Electric vehicle
C701S084000, C180S197000
Reexamination Certificate
active
06278916
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to electric vehicles and partial electric vehicles. More specifically, it relates to a comprehensive torque control strategy for management of regenerative braking in such vehicles, including a sub-strategy for control of grade hold and creep torque.
2. Background Information
A wheeled automotive vehicle may comprise one or more electronic modules that control various aspects of powertrain operation. Certain vehicles have a powertrain that includes at least one rotary electric machine. A vehicle that comprises such as a machine as the sole prime mover is commonly referred to as an electric vehicle, and in such a vehicle, batteries or fuel cells are typical power supplies for the electric machine. Vehicles that include an electric machine in association with another prime mover, an internal combustion engine for example, are sometimes called partial electric vehicles or hybrid electric vehicles.
A powertrain control module (PCM) is a name that is sometimes given to an electronic module that processes certain data to control various aspects of powertrain operation. A rotary electric machine may be one device whose operation is under the control of a PCM. Sometimes the electric machine operates as a motor that makes a positive torque contribution to powertrain torque. At other times the electric machine operates as a generator that makes a negative torque contribution to powertrain torque. Positive torque contribution from the electric machine may appear as traction torque delivered through a drivetrain of the vehicle to at least some of the wheels to propel the vehicle. Negative torque contribution from the electric machine may be used to impose braking torque on the drivetrain to brake the vehicle. In a hybrid electric vehicle, positive and negative torque contributions from the electric machine may also be used to smooth torque fluctuations due to combustion events in an associated combustion engine.
When an electric machine imposes braking torque on the drivetrain to brake the vehicle, it is operating as an electric generator. Generated electricity may be used advantageously to regenerate an electric power supply such as a battery or fuel cell. Hence, such braking is commonly referred to as regenerative braking, or sometimes simply regent for short. A vehicle that possesses regenerative braking capability typically does not rely exclusively on such braking for the vehicle service brakes. While some energy recovery is made possible by regenerative braking, it is inappropriate at certain times to invoke regenerative braking. For example, the state of charge (SOC) of a battery, or battery bank, may be such that regenerative electric current from the electric machine should not be fed, either in whole or in part, to the battery or bank. In the absence of a suitable sink for such electric current, an alternate braking means is needed.
Hence, both full and partial electric vehicles employ some form of mechanical brakes, such as friction brakes at individual wheels. Mechanical friction brakes may be hydraulic-, pneumatic-, or electric-operated. It is known to use an electronic brake controller or brake control unit (BCU) to apply relative proportions of regenerative braking and friction braking when braking is called for.
It may be considered desirable, in certain like driving situations, for certain operational characteristics of an electric vehicle to mimic those of a vehicle powered by an internal combustion engine acting through a drivetrain that has an automatic transmission. For example, when an internal combustion engine powered vehicle is operated on a horizontal surface with the automatic transmission in a forward or reverse drive gear, and without either the accelerator pedal or the brake pedal being depressed, it may be deemed desirable for the idling engine to deliver enough torque through the drivetrain to cause the vehicle to accelerate in the direction of the selected gear from zero speed to some calibratable, yet fairly small, running speed at which the torque is just sufficient to maintain that speed. This is often referred to a vehicle creep. Application of the friction brake opposes vehicle creep.
If the vehicle is on an inclined, rather than a horizontal, surface, the amount of inclination will influence vehicle creep. If the degree of inclination were to increase, creep speed would decrease, eventually reaching zero speed at some particular grade, corresponding to holding the grade. Beyond that, the torque would be insufficient to maintain even zero speed, and the vehicle would begin to roll down the grade in the opposite direction from the direction of the selected gear. A driver of the vehicle may see fit to apply friction brakes at any particular time while the vehicle transmission is in a forward or reverse drive with the engine idling, and is especially likely to do so to counter an incipient rollback on a grade.
Operating efficiency is an important consideration in an electric vehicle, especially because a more energy efficient vehicle will enjoy a greater operating range. Creep cancellation, i.e. reducing creep torque as a function of the extent of brake pedal application, is a known strategy for improving efficiency if the brakes are applied during creep, but an overall torque management strategy that includes creep cancellation may not obtain the best a efficiency for other vehicle operating conditions. If a driver begins to two-pedal the vehicle, i.e. to simultaneously, or near-simultaneously, apply the accelerator and brake pedals, operating efficiency may be detrimentally affected.
A preliminary novelty search developed the following U.S. Pat. Nos. 4,701,682; 4,799,161; 4,949,820; 5,294,191; 5,446,351; 5,457,363; 5,726,890; and 5,905,349.
SUMMARY OF THE INVENTION
The present invention relates to a torque control strategy for management of regenerative braking that comprises novel inter-relationships between a PCM and a BCU. The inventive principles provide a comprehensive torque control strategy that includes a sub-strategy for grade hold and creep torque management. It is believed that the inventive principles can contribute to improved overall operating efficiency of an electric vehicle while maintaining grade hold capability.
One general aspect of the invention relates to a motor vehicle comprising road-engaging wheels, a powerplant comprising a rotary electric machine that is operatively coupled through a drivetrain to the road-engaging wheels and that is capable both of delivering traction torque to the wheels and of imposing regenerative braking torque on the wheels, friction brakes for applying friction brake torque to the wheels, a throttle request source, and a brake request source.
At least one operating data source furnishes operating data that, at certain times, calls for limitation of regenerative braking torque. At least one processor processes throttle request data from the throttle request source and torque modification data to develop motor torques request data for controlling rotary electric machine torque and for processing brake request data from the brake request source, the throttle request data, and operating data from the at least one operating data source to develop friction brake torque data for controlling friction brake torque applied to the wheels and the torque modification data for the first electronic module.
As long as the operating data from the at least one operating data source does not require that regenerative braking torque be limited, the torque modification data equates to the brake torque request data from the brake request source, and the friction brake torque data does not cause the friction brakes to be applied. When the operating data from the at least one operating data source calls for some limiting of the regenerative braking torque, the amount of limiting is subtracted from the torque modification data and the friction brake torque data equates to that amount of limiting for causing the friction brakes to be applie
Brown Gregory P.
Coughlin William J.
Ford Global Technologies Inc.
Nguyen Tan
Tran Dalena
LandOfFree
Torque control strategy for management of creep and grade... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Torque control strategy for management of creep and grade..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Torque control strategy for management of creep and grade... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2455842