Planetary gear transmission systems or components – Nonplanetary variable speed or direction transmission... – Nonplanetary transmission is friction gearing
Reexamination Certificate
2000-06-09
2002-05-21
Estremsky, Sherry (Department: 3681)
Planetary gear transmission systems or components
Nonplanetary variable speed or direction transmission...
Nonplanetary transmission is friction gearing
Reexamination Certificate
active
06390946
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to an automatic transmission for a vehicle. It particularly relates to the automatic transmission comprising a toroidal-type continuously variable transmission including a torque converter, a forward-reverse switching mechanism, a impelling mechanism and a toroidal transmission unit which are sequentially provided from the driving source (engine) end of a vehicle, and further comprising a speed change control device for controlling speed change ratio and forward-reverse switching.
BACKGROUND OF THE INVENTION
A toroidal type continuously variable transmission as an automatic transmission for a vehicle is described in JP-A-2-163562. This toroidal type continuously variable transmission has two toroidal transmission units in tandem, and is provided with a forward-reverse switching mechanism disposed on the preceding stage side of the toroidal transmission units.
In order to control the speed change ratio of the toroidal type continuously variable transmission, the above speed change control device obtains the ratio of the input rotational speed of the transmission as detected by a rotating speed sensor, to the output rotational speed, and changes the tilting angle of a power roller of the toroidal transmission unit according to the engine load, the vehicle speed and so on when the automobile is in motion to change the ratio of the output rotation to the input rotation, that is, the speed change ratio.
In such circumstances, the sensor for the input rotational speed of the transmission detects the output rotational speed of the torque converter. Accordingly, there is a difference between the transmission input rotational speed which the sensor inputs into the speed change control device for speed change control and the actual input rotational speed of the toroidal transmission unit.
However, the sensor for detecting the input rotational speed sometimes can not accurately detect said speed of the transmission under certain conditions.
When a driver switches the operating lever of the continuously variable transmission, from a drive range (D range) to a neutral range (N range) that is to say, puts the automobile in neutral during running, the forward-reverse switching mechanism becomes free in the N range, so that the rotation is not transmitted from the output shaft of the torque converter to the input shaft of the toroidal transmission unit. Accordingly, though the rotation of the output shaft of the torque converter corresponds to the engine rotational speed, the input shaft rotational speed of the toroidal transmission unit depends on the rotation of the output shaft at that time. Therefore it corresponds to the rotational speed corresponding to the vehicle speed and the speed change ratio.
In such cercumstances, the sensor for the input rotational speed of the transmission detects the output rotational speed of the torque converter. Accordingly, there is a difference between the transmission input rotational speed which the sensor inputs into the speed change control device for speed change control and the actual input rotational speed of the toroidal transmission unit.
When the driver switches the select lever again from N range back to D range ie. puts the automobile back into drive, in such a running condition that an input rotational speed difference results, the speed change control device determines the speed change ratio according to the input rotational speed when in the N range, which is different from the actual input shaft rotational speed of the toroidal transmission unit immediately after the above switching.
Therefore the transmission applies a speed change ratio determined according to rotational speed data different from the actual input rotational speed. Therefore the toroidal transmission unit is forced to conduct a sudden speed change operation, which results in the disadvantage that a comparatively large speed change shock is produced.
A methods for overcoming this disadvantage, is to dispose the forward-reverse switching mechanism not on the preceding stage side (input side) of the toroidal transmission unit, but to the subsequent stage side in order to connect the output side of the torque converter and the input side of the toroidal transmission unit to each other. As a result, the input rotational speed detected by the sensor always corresponds to the input shaft rotational speed of the toroidal transmission unit.
However, as the arrangement of the forward-reverse switching mechanism is changed in such a way, during normal running, the large torque rotation decelerated by the toroidal transmission unit is always applied to the forward clutch in the forward-reverse switching mechanism and reverse brake. These members need to have high durability, which results in the disadvantage that it is necessary to increase their capacity and the size.
It is, accordingly, an object of the present invention to prevent a speed change shock by always accurately detecting the actual input shaft rotational speed of the toroidal transmission unit and conducting speed change control according to this accurate detected rotational speed.
It is another object of the present invention to accurately detect the input rotational speed of the toroidal transmission unit without changing the arrangement of the forward-reverse switching mechanism to the subsequent stage side of the toroidal transmission unit.
SUMMARY OF THE INVENTION
In order to achieve the foregoing objects, the automatic transmission for a vehicle of the present invention comprises a toroidal type continuously variable transmission including a forward-reverse switching mechanism, an impelling mechanism and a toroidal transmission unit which are sequentially provided from the driving source end of the vehicle, and a speed change control device for controlling the operation of the transmission. A rotational speed signalling section is provided on one of the rotating members, which are connected to each other in the area from the output member of the forward-reverse switching mechanism to the input disc of the toroidal transmission unit, regardless of presence or absence of rotation transmission in the forward-reverse switching mechanism, an input rotational speed detecting part fitted to the transmission case side is positioned in the vicinity of the outer periphery of said rotational speed signalling section, and the input rotational speed detecting part detects the rotational speed of the rotating member provided with the rotational speed signalling section to be input to the speed change control device.
In the toroidal type continuously variable transmission for a vehicle of the present invention, even in the case where a driver switches the select lever of the automatic transmission from D range to N range during the running of a vehicle and the rotation is not transmitted to the forward-reverse switching mechanism, the rotational speed of one of the rotating members in the area from the output member of the forward-reverse switching mechanism to the input disc of the toroidal transmission unit, that is, the rotational speed which agrees with the input shaft rotational speed of the toroidal transmission unit is detected by the input rotational speed detecting part to be input to the speed change control device. Therefore the actual rotational speed input to the toroidal transmission unit, which is always detected accurately, continues to be input to the speed change control device while driving in the N range.
Accordingly, even if the driver switches the select lever of the automatic transmission from N range back to D range, the speed change control device controls the forward-reverse switching mechanism to transmit the rotation, controls the speed change ratio of the toroidal transmission unit on the basis of the actual input rotational rotating speed of the toroidal transmission unit while in the N range. Therefore the toroidal transmission unit is kept from performing sudden speed change operation and no speed change shock results.
In the present invention,
Hibi Toshifumi
Mori Haruhito
Nakano Masaki
Estremsky Sherry
Foley & Lardner
Nissan Motor Co,. Ltd.
LandOfFree
Toroidal type automatic transmission for motor vehicles does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Toroidal type automatic transmission for motor vehicles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Toroidal type automatic transmission for motor vehicles will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2830579