Toroidal internal combustion engine

Internal-combustion engines – Rotary – With transfer means intermediate single compression volume...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S229000, C123S232000

Reexamination Certificate

active

06250277

ABSTRACT:

FIELD AND BACKGROUND OF THE INVENTION
The present invention relates to internal combustion engines and, more particularly, to an internal combustion engine that is significantly more efficient than those known heretofore.
Internal combustion piston engines have been familiar and ubiquitous since the days of Otto and Diesel. These engines suffer from several widely recognized deficiencies. One is that their thermal efficiencies are far less than their theoretical efficiencies according to the second law of thermodynamics. Up to 30% of the heat released by fuel combustion is absorbed by the engine cooling systems. Another 30% is devoted to engine operation, including compressing air or an air-fuel mixture in the cylinders of these engines. From 5% to 20% of the available energy may be wasted because of incomplete combustion of hydrocarbon fuels. The net result is that these engines generally have overall efficiencies between 32% and 42%.
Another deficiency of these engines is that their exhausts tend to contain toxic substances: carbon particles and carcinogenic hydrocarbons because of incomplete combustion, and nitrogen oxides formed at the high (1800° C. to 2000° C.) combustion temperatures that characterize these engines. A third is that they provide power by transforming the reciprocating motion of their pistons to the rotary motion of their crankshafts. When the fuel-air mixture in a cylinder of an internal combustion engine explodes, the piston is at or near top dead center. At this position, the moment arm, across which the rod connecting the piston to the crankshaft transfers force to the crankshaft, is close to zero. Therefore, the piston exerts minimal torque on the crankshaft. As the piston moves down from top dead center, the moment arm through which the piston transfers force increases, but in the meantime the combustion gases expand somewhat, losing some of their propulsive force, so that the maximum torque exerted on the crankshaft is less than the maximum torque that could be exerted if the force of the piston could always be transferred to the crankshaft at maximum moment arm. Several attempts have been made to address some of these deficiencies. Ferrenberg et al. (U.S. Pat. No. 4,928,658) use a heat exchanger to preheat the input fuel and air of an internal combustion engine with some of the heat of the exhaust gases. Loth et al. (U.S. Pat. No. 5,239,959) ignite the fuel-air mixture in a separate combustion chamber before introducing the burning mixture to the cylinder, in order to attain more complete combustion and inhibit the formation of nitrogen oxides. Forster (U.S. Pat. No. 5,002,481) burns a mixture of fuel, air and steam. This mixture burns at a relatively low temperature of about 1400° C., and nitrogen oxides are not formed. Gunnerman (U.S. Pat. No. 5,156,114) burns a mixture of hydrocarbon fuel and water, but requires a hydrogen-forming catalyst to achieve the same power with his mixture as with ordinary gasoline. Each of these prior art patents addresses only one of the defects of reciprocating internal combustion engines. None addresses the problem in its totality.
U.S. Pat. No. 5,797,366 describes an engine that further addresses the outstanding deficiencies of existing internal combustion engines. In this engine, a mixture of fuel, air and steam is burned in one or more combustion chambers, each combustion chamber being defined by a toroidal combustion chamber housing, a piston and a valve. The mixture is burned at a temperature between about 1400° C. and about 1800° C., thereby minimizing the formation of nitrogen oxides and other pollutants while reducing the heat lost to conduction and radiation through the engine walls. The axis of rotation of the power shaft of the engine is perpendicular to the plane of the combustion chamber housing. The piston is connected to the power shaft of the engine, and the force of the piston always is applied to the power shaft at a constant moment arm perpendicular to that axis of rotation, so that maximum torque is imposed on the power shaft.
In the toroidal engine of U.S. Pat. No. 5,797,366, the volume of the combustion chamber increases as the burning mixture pushes the piston away from the valve. This increase in volume, before the mixture is entirely burned, tends to decrease the thermodynamic efficiency of this engine.
There is thus a widely recognized need for, and it would be highly advantageous to have, an internal combustion engine that further approaches its theoretical thermal efficiency while emitting minimal pollution.
SUMMARY OF THE INVENTION
According to the present invention there is provided an engine, including: (a) at least one housing; (b) for each of the at least one housing: a rotor, rotatably mounted within the each housing, the rotor and the each housing defining between them a toroidal chamber, the rotor including at least one piston projecting into the toroidal chamber; and (c) for each the at least one housing, at least one valve, movably mounted within the at least one housing, at least one element selected from the group consisting of the rotor, the at least one piston and the at least one valve defining at least one combustion region at least while the at least one piston moves past the at least one valve.
According to the present invention there is provided an engine, including: (a) a housing; (b) a rotor, mounted within the housing to rotate about an axis of rotation and having an outer surface including at least one portion of variable distance from the axis of rotation; and (c) a valve, rotatably mounted within the housing and shaped to maintain rolling contact with the outer surface as the rotor and the valve rotate within the housing.
Like the prior art engine of U.S. Pat. No. 5,797,366, the engine of the present invention includes one or more housings with toroidal interiors. Within each housing rotates a rotor to which is attached one or more pistons that projects into the toroidal interior of the housing, so that the rotor of the present invention is analogous to the ring seal of U.S. Pat. No. 5,797,366. The rotor and the housing define between them a toroidal chamber. One or more valves in the housing alternately seals the region between itself and an approaching or departing piston or moves to allow the piston to pass. The difference between the engine of the present invention and the engine of U.S. Pat. No. 5,797,366 is that in the preferred embodiment of the engine of U.S. Pat. No. 5,797,366, separate toroidal chambers are used for compression, combustion and expansion; whereas in the engine of the present invention, the valves, the pistons, the rotor, or some combination thereof define a combustion region of approximately constant volume in which combustion takes place as the valve or valves move to accommodate the transit past the one or more valves of the one or more pistons. This allows the engine of the present invention to operate according to the Trinkler cycle: A mixture of compressed air and fuel introduced into the combustion region by the cooperative motion of the pistons and the valves burns therein at approximately constant volume. The burning mixture then is released to an expansion region, where more fuel is injected to continue the burning and keep the expanding mixture at least initially at approximately constant pressure. Thus, the engine of the present invention is more efficient than the engine of U.S. Pat. No. 5,797,366, in which the combustion occurs in a steadily increasing volume.
In a first preferred embodiment of the engine of the present invention, the valve includes a circular disk with a recess shaped to accommodate the pistons as the pistons pass the valve. The constant-volume combustion region is the space between a passing piston and the interior of the recess. The disk rotates in synchrony with the rotor so that while a piston is not passing the valve, the valve seals off the interior of the housing to form a compression region as a piston approaches the valve or to form an expansion region as a piston departs from the valve.
In a seco

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Toroidal internal combustion engine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Toroidal internal combustion engine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Toroidal internal combustion engine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2487064

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.