Topical treatment or prevention of ocular infections

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S007400

Reexamination Certificate

active

06239113

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method for treating or preventing infections in the eye and to compositions useful therein.
2. Description of the Related Arts
The eye is susceptible to bacterial and parasitic infections arising from both traumatic and non-traumatic related events. Infections are a concern after ocular surgery and precautions are correspondingly taken to prevent the onset of infection. However, even without the invasive trauma of a surgical procedure, infections in the eyelids, conjunctiva, cornea, and other ocular tissues can arise.
Treating infections in ocular tissues can be challenging and/or problematic because of the difficulty in delivering an antibiotic to the affected tissue. In general, ocular infections are treated by local injection, systemic administration, or topical application of an antibiotic. The route of administration depends on the antibiotic selected, the location of the infection and the type of infection.
The simple and direct approach of topically applying the antibiotic to the exterior of the eye has several benefits, including the avoidance of side effects and the reduced chance of developing resistant strains of bacteria as compared to systemic administration. However, for a variety of reasons, many antibiotics are not amenable or suitable for topical application to the eye.
For example, in order for a topical application to be effective, the antibiotic must be able to penetrate the desired tissue. This may include penetrating the conjunctiva and the cornea. Also, the penetration rate must be sufficient to impart an effective dose. Many drugs do not possess a requisite penetration ability with regard to the tissues of the eye. It should be noted that the external layers of the eye are quite different from the tissues encountered in the stomach and intestinal tract. Thus, while a certain drug may be readily absorbed in the intestines and introduced into the blood supply for systemic administration, the same drug may be incapable of being absorbed by or passing through the substantially avascular outer layers of the conjunctiva or cornea at a minimally acceptable therapeutic concentration. The mechanism of transport or uptake of the drug is entirely different for topical administration than for oral administration.
Another concern is that the antibiotic will be toxic to the eye. A toxic response includes redness, swelling and/or discharge. Toxicity is especially problematic for topical administration because it is a concentration dependent phenomenon. The concentration ratio between tear fluid and ocular tissue in topical administration is generally in the range of about 1:500 to 1:1000, due to the penetration gradient. Thus, while a drug may be non-toxic at the minimum effective concentration, the 500% to 1000% increase in concentration associated with topical administration may well induce a toxic response. Again, the fact that oral or systemic administration shows the drug to be compatible with ocular tissue does not predict or address the toxicity issue associated with topical administration.
A further potential unsuitability of an antibiotic is the practicality of topical administration by the patient. Assuming that sufficiently high concentrations of the antibiotic can be used to achieve an effective dose within the target tissue without a toxic response, the application may nonetheless be irritating. An irritation response includes temporary burning, stinging and/or watering of the eye. Beyond whether the increased watering of the eyes washes away so much of the antibiotic composition that an effective dose is prevented, the patient may simply be resistant to complying with the dosage regimen because of the irritation. By failing to comply with the dosing regimen, the treatment efficacy is reduced or eliminated.
Some antibiotics have been found to sufficiently meet the above requirements so as to be applicable to topical administration. Examples of antibiotics that are reported to be useful in ocular topical administration include tobramycin, gentamycin, fluoroquinolone derivatives including norfloxacin, ofloxacin, and ciprofloxacin, naphthyridine, tetracyclines, and erythromycin. However, the dosing of the known topical antibiotics is usually an extensive and inconvenient regimen. Applying drops every 2 hours for the first two days and every 4 hours for the next several days is a common dosing regimen for aqueous solutions to treat ocular infections. But, such an extensive dosing regimen is inconvenient and obtaining patient compliance can be difficult. Of course, the greater the non-compliance with the regimen, the less effective the treatment.
It would be beneficial to find additional antibiotics that are capable of topical application in treating the eye. It would be further desirable to provide a topical formulation that is effective against a broad spectrum of bacteria and that can be administered in a less extensive regimen.
SUMMARY OF THE INVENTION
The present invention relates to a process for treating an eye that comprises topically applying an azalide antibiotic to an eye in an amount effective to treat or prevent infection in a tissue of the eye. Applicants have discovered that azalide antibiotics are suitable for topical administration to the eye. A preferred azalide antibiotic is azithromycin.
A preferred form of the invention involves forming or supplying a depot of the azalide antibiotic in contact with the eye for a sufficient length of time to allow a minimum inhibitory concentration (MIC) of the azalide antibiotic to diffuse into the cells of the targeted eye tissue(s). Once the MIC threshold has been surpassed, a therapeutically effective concentration of the azalide antibiotic will remain in the tissue(s) for a considerable period of time due to its long half-life. Accordingly, an advantage of certain preferred forms of the present invention is a simplified dosing regimen. For example, one or two topical applications may provide a sufficient tissue concentration that an inhibitory concentration remains resident in the infected tissue for several days, i.e. 4-12 days. Thus, a complete treatment regimen may involve only one or two topical applications.
The invention also relates to a topical ophthalmic composition containing an azalide antibiotic. In one embodiment, the ophthalmic composition is a sustained release composition comprised of an aqueous suspension of the azalide antibiotic and a polymer suspending agent.
DETAILED DESCRIPTION OF THE INVENTION
Azalides are a known subclass of macrolide antibiotics. Occasionally, the literature has also referred to these compounds as azolides, and the two spellings should be taken as having the same meaning. For the present invention and as used in this specification, an “azalide antibiotic” means a derivitized erythromycin A structure having a nitrogen atom inserted into the lactone ring. Additional variations from the erythromycin structure are also embraced within the term “azalide antibiotic.” Such additional variations include the conversion of a hydroxyl group to an alkoxy group, especially methoxy (so-called “O-methylated” forms), for example at the 6 and/or 12 position. Such compounds are described in U.S. Pat. No. 5,250,518, the entire contents of which are incorporated herein by reference. Other variations relate to derivatives of the sugar moieties, for example, 3″ desmethoxy derivatives and the formation of oxo or oxime groups on the sugar ring such as at the 4″ position as described in U.S. Pat. No. 5,441,939, the entire contents of which are incorporated herein by reference. This patent also teaches that the adjacent hydroxyl groups at the 11 and 12 position of the lactone ring can be replaced with a single carbonate or thiocarbonate group. In short, an azalide antibiotic for purposes of the present invention is any derivative of the erythromycin structure that contains a 15-member lactone ring having a ring nitrogen, preferably at the 9 position, and a sugar group attached via a gly

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Topical treatment or prevention of ocular infections does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Topical treatment or prevention of ocular infections, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Topical treatment or prevention of ocular infections will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2570989

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.