Topical application of chromophores for hair removal

Drug – bio-affecting and body treating compositions – Live hair or scalp treating compositions – Shaving preparation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S009000

Reexamination Certificate

active

06685927

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the fields of dermatology and cosmetology, and particularly relates to the application of chromophore compositions to the skin so as to target hair follicles prior to the application of electromagnetic irradiation.
2. Information Disclosure Statement
A main function of mammalian hair is to provide environmental protection. However, that function has largely been lost in humans, on whom hair is usually kept or removed from various parts of the body for cosmetic reasons.
Various procedures have been employed to remove unwanted hair, including shaving, electrolysis, the use of depilatory creams or lotions, waxing, plucking, therapeutic anti-androgens, lasers and lamps. These conventional procedures each have significant drawbacks, and most often only result in temporary hair removal. Although electrolysis or electrothermolysis can provide permanent hair removal, these painful and tedious techniques rely on operator skill and require multiple treatments. Therefore, the permanent removal of unwanted hair without the risk of the occurrence of folliculitis, scarring or infections (which often occurs after electrolysis) is difficult to achieve.
It has been disclosed that selective photothermolysis (through the use of Ruby lasers, Alexandrite lasers, Nd:YAG lasers, pulsed diode lasers, or pulsed light) is an effective method for destroying pigmented hair follicles. The thermal effects generated during laser irradiation are principally responsible for hair follicle alteration and destruction. In these procedures, thermal damage to the hair follicle is the consequence of laser light absorption by endogenous melanin. However, results are essentially dependent on hair pigmentation, quantity of melanin present in hair (depending on color, hair diameter, hair cycle, position on the body . . . etc) and the ratio between melanin concentration in the hair bulb and in the epidermis. For these reasons, hair removal methods using lasers or light alone give poor results for light-colored hairs (blond, auburn and white) and can burn and/or produce discoloration of darker skin.
Many systems have been developed to counteract these negative effects, such as cooling apparatuses, or the use of pulsed, sequenced or alternating laser pulses. In addition to pure laser applications, other methods have been disclosed, including the use of exogenous chromophore to increase the light absorption efficiency of the hair follicle in comparison with endogenous melanin absorption, and thus increase the safety of the procedure by reducing the laser power needed.
Tankovich, in U.S. Pat. No. 5,425,728, suggested that the photothermolitic effects of the lasers could be enhanced by utilizing contaminants with a high absorption of certain laser wavelength. The contaminants suggested included carbon in peach oil that, with massage or ultrasound, could be used to force the carbon into the hair ducts. For this contaminant, a CO
2
laser was recommended with pulses between 200 and 275 nanoseconds. An alternative method uses a near infrared laser at about 1,060 nm but with pulses in the range of 25-30 picoseconds. Another alternative utilizes a staining technique and matched the laser to the stain selected. Yet another method used a photosensitizer which made the entire hair shaft susceptible to the applied laser. These most recent laser methods using red and infrared wavelength are much quicker than the earlier treatments in that the laser can act upon a group of hairs in a fraction of a second. Also, the use of the laser is somewhat less painful and has a much lower risk of infection and scarring than any of the non-laser methods mentioned above. However, these previous carbon-based formulations are not able to specifically target hair follicles. (for example, carbon particles are found within stratum corneum).
In the patent to Schaefer, U.S. Pat. No. 5,292,512, it was suggested that only a particular diameter of microspheres could be used to specifically target hair follicles. In the case of human skin, Schaefer claims that microspheres with a diameter greater than 10 &mgr;m do not settle into the follicular duct, whereas microspheres with a size smaller than 3 &mgr;m penetrate both the stratum corneum and the follicular duct. As a result, Schaefer claims that active substances encapsulated in microspheres within this size range can be specifically targeted to the hair follicle. Rolland A et al., “Site-specific drug delivery to pilosebaceous structures using polymeric microspheres”, Pharmaceutical Research 10: 1738-44 (1993) clearly demonstrated this by following the localization process of fluorescent microspheres to hair follicles. Small microspheres (<1 &mgr;m in diameter) entered into follicles as well as the upper 2-3 cellular layers of the stratum corneum and thus appeared to be spread over the skin. In contrast, medium size microspheres (around 5 &mgr;m) entered in the follicles but did not penetrate the upper layers of the stratum corneum. This results in an apparent targeting of these microspheres to hair follicles. Large microspheres (>10 &mgr;m) were excluded from penetrating into either of these sites. Consequently, appropriate choice of particle size facilitates specific follicular targeting. However, these particles can only penetrate the follicle to depths corresponding to 200-300 &mgr;m below the skin surface, which is not sufficient to destroy cells in the root of the follicle. Also, these particles still can still enter and cause damage to other areas of the skin, such as the channels of sweat glands.
Photosensitizers and, in general, exogenous compounds used in conjunction with light (exogenous chromophores) are not considered an “active substance” (these compounds are only “active” under light) and one other approach was described to encapsulate at least one exogenous chromophore in this microsphere size range (3-10 microns in diameter) to obtain specific follicular targeting before laser irradiation. This approach is described in U.S. Pat. No. 6,287,549 by Sumian et al. However, Sumian C et al. reports in “A new method to improve penetration depth of dyes into the follicular duct: Potential application for laser hair removal”, J. Am. Acac. Dermatol., 41:172-5 (1999), that dyes (e.g. Rhodamine 6G) can be specifically positioned in the follicle if the dye is encapsulated in size-defined microspheres (around 5 &mgr;m in diameter) and diffusion outside the microspheres is induced. This diffusion can reach 500 &mgr;m below the skin surface (with the appropriate vehicle). After diffusion, compounds may stay in hair follicles to induce a specific action and/or diffuse into the dermal tissue. Penetration and diffusion of compounds/drugs inside hair follicles depends on the formulation vehicle and the molecule's ability to pass through a collapsed follicle, particularly its size, molecular weight and solubility. Even if diffusion occurs, the compound/drug flux is limited by those follicles that have collapsed after the initial hair removal. In addition, these microparticles do not only target the hair follicle; some microparticles can be found in the channels of sweat glands. Because sweat glands help to regulate body temperature by manufacturing and excreting sweat onto the skin surface, alteration of their excretory channels after laser irradiation can produce a “dangerous” temperature deregulation of the body, and is thus an occurrence that should be avoided.
Klopotek, U.S. Pat. No. 6,074,385, discloses a method in which magnetic particles are utilized to remove hair. Hair is first manually removed from the follicles, then particles are applied to the skin by a method that will force the particles into the follicle, such as including them in a dry slurry or a lotion. Another method would be to force them into the skin using a magnetic field. A composition consisting of magnetic particles of a size small enough (5 Angstroms-100 microns, preferably 50 Angstroms-10 microns) so that at least some of them wi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Topical application of chromophores for hair removal does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Topical application of chromophores for hair removal, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Topical application of chromophores for hair removal will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3329171

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.