Heat exchange – With retainer for removable article – Electrical component
Reexamination Certificate
2000-01-13
2002-05-28
Atkinson, Christopher (Department: 3743)
Heat exchange
With retainer for removable article
Electrical component
C165S104330, C165S121000, C361S697000, C361S700000, C257S715000, C257S722000
Reexamination Certificate
active
06394175
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
The present invention is directed, in general, to a cooling device for electronic components and, more specifically, to a cooling device that uses heat pipes and is employable as a top mounted cooling device for board mounted electronic components and circuits.
BACKGROUND OF THE INVENTION
Pity the poor circuit designer of today. He or she can design magnificent circuits that can do more in less space than his or her predecessor ever, in their wildest dreams, thought possible. Yet circuit designers are still faced with some of the same problems that confounded designers at a time when vacuum tubes were the latest technology. One such problem is the control of temperature in the electronics device before it builds to a level where component and circuit damage can occur.
In fact, this age old problem is even more perplexing to contemporary circuit designers than it was to their predecessors. Today's circuit designers can make wonderfully small devices, yet must dedicate an enormous amount of real estate in the device to heat control devices. In the older vacuum tube electronics device, the functional electronic components took so much space and the cabinet or chassis housing the device was so large, that the space occupied by heat control devices was hardly noticeable. This is not the case today, where heat control considerations have come to occupy a preeminent position in circuit design.
Heat control becomes a most perplexing problem to contemporary circuit designers when they must package their design for commercial use. Because circuits are designed to accomplish more tasks in a more efficient manner, they have become increasingly complex. This increased complexity means the total number of components to be housed in a case or cabinet designed to accommodate the circuit is also increased. The task has become even more difficult and complex with the increased pressure to produce the smaller, more compact devices demanded by customers.
In certain electronic devices, such as power supplies, the amount of heat generated by the circuit components is significant. Unless such heat is controlled, temperatures will build to a level where significant component damage will occur, followed by the failure of the electronics device itself. Such considerations frequently force circuit designers to package an electronic device based upon heat control considerations, instead of functional operational considerations.
Heat is usually controlled in an electronics device by dissipating it into the ambient air before temperatures rise to a level that damage can occur. The traditional method to contain temperature build-up within acceptable limits is to associate the significant heat generating components with heat dissipation devices, such as finned heat sinks. In certain cases, the most efficient use of a finned heat sink is to mount the heat generating component directly on the heat sink. This provides for a more efficient conduction of heat from the component to the fins of the heat sink, where the heat is dissipated into the ambient air.
A finned heat sink is strictly a passive heat dissipation device, the efficiency of which is determined by its material and design. The use of passive finned heat sink devices has generally been successful, but at a cost. The cost is the additional weight added to the electronic device by using a number of heat sinks and the space required by such heat sinks. These factors militate against using passive heat sinks for smaller, more compact electronic devices that generate significant heat.
As more complex, compact electronic systems have evolved, electronic device designers have turned to other heat control methods in order to remain competitive. On method that has met with some success is the use of active, rather than passive, systems to control temperature. Certain board mounted electronic components that generate large amounts of heat, such as power components, may generally have a dedicated active cooling device, such as a small fan, mounted on them. A small fan used in this manner provides more efficient cooling in less space than a classic finned heat sink used to cool the same component. When a fan is combined with a finned heat sink, even more cooling efficiency is realized.
Notwithstanding the benefits associated with using active cooling devices in combination with passive cooling devices, a need exists for even more aggressive temperature control devices and methods. This is because customer demand continues to grow for even more complex and compact electronic devices. Such complex devices can be furnished, but they will have an even larger number electronic components that require cooling in order to prevent temperature related damage.
Accordingly, what is needed in the art is an improved heat control device that can be used to efficiently control temperature build-up from heat generating electronic components and electronic circuits.
SUMMARY OF THE INVENTION
To address the above-discussed deficiencies of the prior art, the present invention provides an integrated cooling device employing heat pipes for cooling an electronic component and a method of manufacturing the same. In one embodiment, the cooling device includes a plate couplable to and supportable by the electronic component. The plate has at least one channel therein that presents an enhanced surface area. The cooling device further includes a sealed heat pipe with a heat-receiving portion fitted within the channel such that the enhanced surface area in contact with the heat pipe experiences an increased thermal communication between the plate and the heat pipe. The heat pipe also has a heat-removing portion that is distal from the heat-receiving portion. Inside the heat pipe, a fluid, initially located in the heat-receiving portion of the heat pipe as a liquid, receives heat and evaporates to form a vapor that travel to the heat-removing portion. In the heat-removing portion of the heat pipe, the vapor condenses and cycles back to the heat-receiving portion.
Another embodiment of the invention provides for a cooling device employing heat pipes for cooling a integrated circuit. This embodiment provides for a plate with a footprint based on a footprint of the integrated circuit to be cooled. The plate is couplable to and supportable by the integrated circuit and has at least one channel with the heat-receiving portion of a sealed heat pipe therein.
The present invention, in broad scope, therefore introduces the broad concept of a cooling device that employs heat pipes. The cooling device can be used as a top mounted device to cool a heat generating electronic component or an integrated circuit. The invention provides an enhanced area for a heat-receiving portion of a heat pipe to gather heat from the electronic component or the integrated circuit. The collected heat evaporates a fluid in the pipe and changes its state from liquid to vapor. The vapor migrates to a heat-removing portion of the heat-pipe that is distal from the heat-receiving portion, wherein the vapor condenses to return to a liquid state. The liquid then flows back to its original position in the heat-receiving portion of the heat pipe where the cycle starts again.
In one embodiment of the present invention, the heat pipe approximates the shape of a U. The U-shape heat pipe is located on its side with the heat-receiving portion disposed in the channel in the plate coupled to the electronic component or circuit. A particularly beneficial embodiment provide for the integrated cooling device to have a plurality of channels in the plate with a plurality of sealed heat pipes disposed therein. A particularly useful aspect of this embodiment provides for the cooling device to have five sealed heat pipes disposed in five channels.
Another embodiment of the invention provides for the plate of the cooling device to be the base of a heat sink having a plurality of cooling fins. Another aspect of this embodiment provides for a cooling fan couplable to the heat sink. These embodiments, when employ
Chen Shiaw-Jong S.
Hooey Roger J.
Atkinson Christopher
Hitt Gaines & Boisbrun
LandOfFree
Top mounted cooling device using heat pipes does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Top mounted cooling device using heat pipes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Top mounted cooling device using heat pipes will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2880023