Food or edible material: processes – compositions – and products – Fermentation processes – Of plant or plant derived material
Reexamination Certificate
2001-10-31
2003-02-04
Rose, Shep K. (Department: 1614)
Food or edible material: processes, compositions, and products
Fermentation processes
Of plant or plant derived material
C433S215000, C433S216000, C222S137000
Reexamination Certificate
active
06514543
ABSTRACT:
TECHNICAL FIELD
The present invention relates to improved dental bleaching compositions and methods for bleaching teeth.
BACKGROUND ART
White teeth have long been considered cosmetically desirable. Unfortunately, teeth become almost invariably discolored in the absence of intervention. The tooth structures which are generally responsible for presenting a stained appearance are enamel, dentin, and the acquired pellicle. Tooth enamel is predominantly formed from inorganic material, mostly in the form of hydroxyapatite crystals and further contains approximately 5% organic material primarily in the form of collagen. In contrast, dentin is composed of about 20% protein including collagen, the balance consisting of inorganic material, predominantly hydroxyapatite crystals, similar to that found in enamel. The acquired pellicle is a proteinaceous layer on the surface of tooth enamel which reforms rapidly after an intensive tooth cleaning.
Staining of teeth results from extrinsic and/or intrinsic staining. Extrinsic staining of the acquired pellicle arises as a result of compounds such as tannins and polyphenolic compounds which become trapped in and tightly bound to the proteinaceous layer on the surface of the teeth. This type of staining can usually be removed by mechanical methods of tooth cleaning. In contrast, intrinsic staining occurs when staining compounds penetrate the enamel and even the dentin or arise from sources within the tooth. This type of staining is not amenable to mechanical methods of tooth cleaning and chemical methods are required.
Consequently, tooth-bleaching compositions generally fall into two categories: (1) gels, pastes, or liquids, including toothpastes that are mechanically agitated at the stained tooth surface in order to affect tooth stain removal through abrasive erosion of stained acquired pellicle; and (2) gels, pastes, or liquids that accomplish the tooth-bleaching effect by a chemical process while in contact with the stained tooth surface for a specified period, after which the formulation is removed. In some cases, the mechanical process is supplemented by an auxiliary chemical process which may be oxidative or enzymatic.
The majority of professionally-monitored at-home tooth-bleaching compositions act by oxidation. These compositions are dispensed directly to a patient for use in a custom-made tooth-bleaching tray, held in place in the mouth for contact times of greater than about 60 minutes, and sometimes as long as 8 to 12 hours. The slow rate of bleaching is in large part, the consequence of formulations that are developed to maintain stability of the oxidizing composition. The most commonly used oxidative compositions contain the hydrogen peroxide precursor carbamide peroxide which is mixed with an anhydrous or low-water content, hygroscopic viscous carrier containing glycerine and/or propylene glycol and/or polyethylene glycol. When contacted by water, carbamide peroxide dissociates into urea and hydrogen peroxide. Associated with the slow rate of bleaching-in the hygroscopic carrier, the currently available tooth-bleaching compositions cause tooth sensitization in over 50% of patients. Tooth sensitivity is believed to result from the movement of fluid through the dentinal tubes toward nerve endings in the tooth. This movement is enhanced by the carriers for the carbamide peroxide. In fact, it has been determined that glycerine, propylene glycol and polyethylene glycol can each give rise to varying amounts of tooth sensitivity following exposure of the teeth to heat, cold, overly sweet substances, and other causative agents.
Prolonged exposure of teeth to bleaching compositions, as practiced at present, has a number of adverse effects in addition to that of tooth sensitivity. These include: solubilization of calcium from the enamel layer at a pH less than 5.5 with associated demineralization; penetration of the intact enamel and dentin by the bleaching agents, so as to reach the pulp chamber of a vital tooth thereby risking damage to pulpal tissue; and dilution of the bleaching compositions with saliva with resulting leaching from the dental tray and subsequent digestion.
The stability of existing formulations of hydrogen peroxide-containing tooth-bleaching compositions in terms of shelf-life as well as over the period of use in the mouth, depends, in general, on an acidic pH. The hydrogen peroxide becomes markedly less stable as the pH increases. Indeed, Frysh, et al. (Journal of Esthetic Dentistry Vol. 7, No. 3, pp. 130-133, 1995) described the use of high concentration (35%) of hydrogen peroxide solutions at an initial alkaline pH, which was required to be formulated immediately before use and was administered in the form of a liquid to extracted teeth to achieve tooth bleaching. Phillips and Bowles (IADR Abstract J. Dent.res 75, 1996) have demonstrated that hydrogen peroxide penetrates the enamel of extracted teeth less readily over a 15 minute period at pH 9.0 than at pH 4.5. Carbamide peroxide compositions have been formulated at a pH of 5.0-6.5 using hygroscopic carriers and maintaining a low water content. This type of formulation is problematic with regard to enhanced tooth sensitivity. On contact with saliva, the water content of the formulation increases, causing the carbamide to disassociate into urea and hydrogen peroxide and the pH to be decreased. In fact, the equilibrium pH of a 10% carbamide peroxide solution is approximately 3.45 and a typical commercially-available tooth-bleaching gel with 10% carbamide peroxide when combined with saliva in a 1:1 weight ratio has an initial pH of 5.6 and gradually decreases to pH 4.8 after 8 hours.
Thus, currently available tooth-bleaching compositions that rely on hydrogen peroxide as oxidizing agents, all release hydrogen peroxide from precursors at low pH levels despite the low rates of tooth-bleaching activity.
There is a need for a home use tooth-bleaching product that is stable, easy to use, and rapid-acting that utilizes reduced amounts of hydrogen peroxide and is capable of administration to a patient by means of a dental tray. There is a further need for a tooth-bleaching composition that may reduce hard and soft tissue irritation, tooth sensitivity, and bleaching composition ingestion to further increase patient compliance.
SUMMARY OF THE INVENTION
The invention satisfies the above needs. An embodiment of the invention includes a tooth-bleaching composition for contacting a tooth surface in a subject that includes a hydrogen peroxide-containing compound. Furthermore the composition includes a matrix for administering the hydrogen peroxide-containing compound to the tooth surface. The matrix comprises a thickening agent, an agent for stabilizing the hydrogen peroxide-containing compound, a pH adjusting agent and a calcium chelating agent, wherein the pH of the tooth-bleaching composition during the bleaching process is substantially constant within a range of pH 6.0-10.
A further embodiment of the invention includes a dosage delivery unit for tooth bleaching, including a multi-chamber vessel wherein each chamber-is responsive to an applied pressure from an external source, such that a mixture of reagents contained within a compartment including a hydrogen peroxide containing composition and a matrix, will be forced to exit the compartment through a mixing baffle in response to the externally applied pressure.
A further embodiment of the invention includes a method for bleaching teeth including preparing a composition as described above and administering the composition to the tooth surface.
DETAILED DESCRIPTION OF THE INVENTION
The present invention comprises compositions and methods for bleaching tooth enamel in situ which allow the use of reduced concentrations of hydrogen peroxide in tooth-bleaching compositions in order to achieve effective tooth bleaching in a contact time of less than one hour.
The tooth surface is defined here and in the claims as a portion of a tooth which is directly responsible for the stained appearance of said tooth. The term tooth surface general
Banner & Witcoff , Ltd.
Montgomery R. Eric
Rose Shep K.
LandOfFree
Tooth bleaching compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Tooth bleaching compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tooth bleaching compositions will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3137466