Tool for managing fluid flow in a well

Wells – With means for separately pumping from plural sources in well

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C166S066400, C166S066500

Reexamination Certificate

active

06279651

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to tools and methods for managing fluid flow in wells, particularly oil or gas wells. A particular implementation of the tool of the invention is a unitary flow control device that can function as a valve, a fluid flow sensor and meter, an electrical generator, and a pump.
In the oil and gas industry, well and reservoir management is an important aspect of efficient and economical production of oil and gas. Fluid flow, such as of the oil and gas being produced, needs to be monitored and controlled. There are various flow sensing devices, flow metering devices and valves used in downhole pipe or tubing strings to perform these functions. With changes in the industry, however, there is the need for improved tools and methods.
One of these changes is that more complex wells are being drilled. For example, horizontal wells and wells with multiple lateral bores extending from a main borehole are being drilled to improve hydrocarbon recovery rates at reduced cost relative to drilling multiple individual vertical wells.
Another of these changes is that more and more control is being put downhole to improve recovery to cost ratios. A presently evolving area uses intelligent tools applying microprocessor and computer technology in the borehole. These and other types of tools require some source of electricity to operate. Typically these sources have included power generating equipment at the surface with wireline connections to the downhole tool or self-contained downhole sources such as batteries contained in the tools themselves. To provide another source, there is the need for a downhole generator that is powered by a well's own flowing fluid.
As a specific situation arising in well and reservoir management, consider an oil or gas well having a main borehole from which several lateral boreholes extend. In this, as with other structural types of oil or gas wells, undesirable water may be produced with desired hydrocarbons. The water needs to be separated from the hydrocarbons, and in at least some instances, injected back into the well or into a disposal well. This typically requires producing the entire stream to the surface from which the well has been drilled (or to a platform or other watersurface facility for offshore wells), separating the water from the hydrocarbons at the surface, and then returning the separated water to the well or to another well. It would be desirable to be able to do this separating and reinjecting downhole to save the time and expense of producing the water all the way to the surface and then returning it back into the ground. Additionally, if the water could be separated and left downhole, more hydrocarbons could be produced in the volume previously occupied by the water. This might also obviate the necessity of having separator equipment at the surface and of having a separate injection well or other water disposal system. Accordingly, there is the specific need for an improved tool and method with which to perform downhole water separation and reinjection. More generally, there is the need for an improved tool and method that can be used downhole to control and monitor fluid flow. There is also the need for such a tool to have the capability of generating electricity in response to fluid flow in a well, such that the electricity can be used in the control aspect as needed, for example.
SUMMARY OF THE INVENTION
The present invention meets, the aforementioned needs by providing a novel and improved tool and method for managing fluid is flow in a well. The tool and method can be used downhole in a well to control and monitor fluid flow, such as could be used in reinjecting water downhole. The present invention can also be used to generate electricity downhole in response to fluid flowing in a well.
The present invention combines flow control and monitoring functions. A particular implementation of the tool of the present invention provides valve and metering functions combined with electrical generator and pump functions. Two such tools can be used such that one generates electricity downhole to power the other tool to operate as a pump. For example, one tool can be used in one flow zone of the well to generate electricity in response to fluid flow in that zone, and the electricity from that tool used to power the other tool located in another flow zone in which water is to be reinjected into the formation. That power can also be used to control flow and do reservoir evaluation on another zone. As other non-limiting examples, the present invention can be used in horizontal well sections to keep water contact from propagating down a selected length of the horizontal section, and it can be used to create a back pressure in one well section while drawing down in another section. Of course, a single multi-function tool of the present invention can be used alone in any of its modes, whether as a valve, a meter, a generator, or a pump; and two or more tools can be used to work together such as suggested above in the examples of two tools of the present invention. Thus, the present invention has advantages apparent from the foregoing.
The tool of the present invention generally comprises an outer body having an opening defined in a side wall of the body. A flow control body is disposed in the outer body such that the flow control body is movable between a closed position blocking the opening in the outer body and an open position unblocking the opening in the outer body (the blocking/unblocking being anywhere between fully blocked and fully unblocked). A rotor is connected to the flow control body and disposed in the outer body such that the rotor can rotate within the outer body in response to a force applied to the rotor. The tool can also include an actuator disposed in the outer body to move the flow control body linearly between the closed position and the open position. In a particular implementation, the rotor moves linearly with the flow control body and the flow control body rotates with the rotor. There can also be suitable seals as needed.
The present invention also provides a method of managing fluid flow in a well in which a flow control device is located, the flow control device having a body in which an opening is defined between an annulus outside the body and a flow channel inside the flow control device, and the flow control device also having a rotor and a plurality of electromagnetic members. The method comprises operating the flow control device in either a generator mode or a pump mode.
The method of managing fluid flow in a well can also be defined as moving the flow control body, the rotor, and the electromagnetic members together to selectively block or unblock the opening. In a particular version of this method, the flow control body, the rotor, and the electromagnetic members are moved axially within the body of the flow control device. For example, this can include energizing a motor coupled in the flow control device to the flow control body, the rotor, and the electromagnetic members. As another example, this can include applying to the flow control body, the rotor, and the electromagnetic members a longitudinal mechanical force originated outside the flow control device.
The present invention also provides a method of managing fluid flow in a well defined as comprising: producing a fluid from a subterranean formation into the well, the fluid including hydrocarbons and water; separating, in the well, water from hydrocarbons of the fluid; and reinjecting, from within the well, the separated water such that the separated water is not produced to the surface from which the well extends.
Another definition of the method of managing fluid flow in a well in accordance with the present invention comprises generating electricity in the well and operating a pump in the well with the electricity.
The present invention also provides a system for managing fluid flow in a well, comprising: a first set of packers in the well to define a first zone; a first flow control device, t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Tool for managing fluid flow in a well does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Tool for managing fluid flow in a well, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tool for managing fluid flow in a well will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2534372

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.