Toner for electrostatic image development

Radiation imagery chemistry: process – composition – or product th – Electric or magnetic imagery – e.g. – xerography,... – Post imaging process – finishing – or perfecting composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S111400, C430S137170

Reexamination Certificate

active

06248491

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a toner for electrostatic image development which is employed in electrophotographic copying machines, printers, and facsimiles, and a method of producing the same. The present invention also relates to a toner for electrostatic image development which can also be preferably employed in the development of a toner-jet printer.
2. Description of the Related Art
In electrophotographic copying machines, printers, and facsimiles, the following needs to the toner have recently been enhanced for cost reduction and size reduction of machines as well as power saving and resource saving, including a further improvement in quality of the printed image. The needs include improvement in definition and gradient of the printed image, reduction in thickness of the toner layer, reduction in amount of wasted toner, reduction in particle diameter and spheroidizing of the toner for reducing the amount of the toner consumed per page, decrease in fixing temperature for reduction in power consumed, oilless fixation for simplification of machines, improvement in hue, transparency and gloss in full-color image, reduction in VOC (volatile organic compound) during the fixation, which is likely to exert an adverse influence on human health, and the like.
Reduction in particle diameter of the powdered toner prepared by a pulverization method, which has been employed for a long time, can be basically carried out. However, with the reduction in particle size, there arise these problems that (1) it becomes difficult to control charge because of an increase in the amount of colorants and waxes exposed on the surface of toner particles, (2) the fluidity of the powder is lowered by the irregular shape of the toner particles and (3) the energy cost required for the production increases, thus making it difficult to sufficiently satisfy the needs described above.
Therefore, a development of a spherical toner having a small particle diameter has been made intensively by the polymerization method or emulsification/dispersion method. Although various methods have been known as the method of producing a toner using the polymerization method, there has widely been employed the suspension polymerization method, which comprises uniformly dissolving and dispersing a monomer, a polymerization initiator, a colorant and a charge control agent, adding the mixture in an aqueous medium containing a dispersion stabilizer while stirring to form oil droplets and heating, thereby to cause the polymerization reaction to obtain toner particles. Although the reduction in particle diameter and spheroidizing can be satisfactorily conducted by the polymerization method, a principal component of the binder resin is limited to a radically-polymerizable vinyl polymer and toner particles made of a polyester resin or epoxy resin suited for use as a color toner cannot be produced by the polymerization method. It is difficult to reduce VOC (volatile organic compound made of an unreacted monomer) by the polymerization method and its improvement is required.
As is disclosed in Japanese Patent Application, First Publication No. Hei 5-66600 and Japanese Patent Application, First Publication No. Hei 8-211655, the method of producing the toner using the emulsification/dispersion method is a method of mixing a mixture of a binder resin and a colorant with an aqueous medium and emulsifying them to obtain toner particles and has these advantages that (1) possible binder resins can be widely selected, (2) reduction in VOC is easy to realize and (3) the concentration of the colorant is easy to change optionally within a range of low to high value, as compared with the polymerization method, in addition to the advantage that is easy to cope with the reduction in particle diameter and spheroidizing of the toner similar to the polymerization method.
It has generally been known that a polyester resin is more preferable than a styrene-acrylic resin as a binder resin for a toner, which can reduce the fixing temperature and forms a smooth image surface by sharp melting during the fixation, and a polyester resin having an excellent pliability is used in the color toner particularly preferably. As described above, since the polyester resin can not be employed as the principal component of the binder resin in the polymerization method, a spherical or generally spherical toner having a small particle diameter containing a polyester resin as the binder resin obtained by the emulsification/dispersion method has attracted special interest recently.
However, a polyester resin toner obtained by the emulsification/dispersion method which has hitherto been employed contains a straight-chain resin having a comparatively low molecular weight as the binder resin. Therefore, it is essential to coat a fixing heat roller with an anti-offset solution such as silicone oil and the silicone oil transfers to a printing paper or an OHP paper. So in addition to the problem of maintenance, are problems such as poor writing on printed sheet and greasiness due to oil. There was also a problem that the peel strength is not sufficient necessarily because it varies depending on the purposes.
BRIEF SUMMARY OF THE INVENTION
An object of the present invention is to provide a toner for electrostatic image development which has good fixing properties and is superior in image quality in a heat roller fixing system without employing an anti-offset solution, and which has a spherical or generally spherical shape and has a small particle diameter, and a method of producing the same.
As a result of diligent research by paying attention to the molecular weight distribution, structure, and acid value of the polyester resin employed as the binder resin, the present inventors have found a high-image quality spherical or generally spherical toner having oilless fixation properties and a preferable method of producing the same, thus completing the present invention.
That is, the present invention provides a toner for electrostatic image development, comprising a binder resin, a colorant, and a toner for electrostatic image development, comprising a binder resin, a colorant and a positive charge control agent, the binder resin being made of a polyester resin wherein the weight-average molecular weight as measured by gel permeation chromatography of a tetrahydrofuran-soluble fraction of the polyester resin contained in the toner is 30,000 or more and the weight-average molecular weight
umber-average molecular weight is 12 or more and, moreover, the area ratio of a molecular weight of 600,000 or more is 0.5% or more and the area ratio of a molecular weight of 10,000 or less is within a range of 20-80%, and wherein the toner has a spherical or generally spherical shape having the average circularity (average value of circularity defined by (perimeter of a circle having the same area as that of a projected area of particles)/(perimeter of a projected image of particles)) of 0.97 or more.
When employing the toner for electrostatic image development described above, it becomes unnecessary to coat a fixing heat roller with an anti-offset solution during the formation of an image by heat roller fixation.
The spherical or generally spherical toner containing a polyester resin having a molecular weight/molecular weight distribution within a specific range according to the present invention has good fixation properties using the heat roller which is not coated with an anti-offset solution, thus obtaining an image with an excellent quality.
Such a powdered toner can be preferably produced by mixing a mixture containing a binder resin and a colorant as an essential component with an aqueous medium in the presence of a base, emulsifying the admixture to form resin particles containing the colorant, separating the particles from the liquid medium and drying the particles.
DETAILED DESCRIPTION OF THE INVENTION
In the measurement of the viscoelasticity of the toner, (a) the storage elastic modulus (G′) at 110° C. and 1 Hz is prefer

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Toner for electrostatic image development does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Toner for electrostatic image development, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Toner for electrostatic image development will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2496363

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.