Token ring network topology discovery and display

Multiplex communications – Diagnostic testing – Determination of communication parameters

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S254000

Reexamination Certificate

active

06483812

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates in general to an improved method and system for managing communications networks. In particular, the present invention relates to a method and system for efficiently acquiring topology information associated with a communications network. More particularly, the present invention relates to a method and system for utilizing token ring information frames such that the topology of a token ring bridged network can be discovered and displayed. Still more particularly, the present invention provides a method and system for extracting token ring network topology information utilizing extant token ring routing information frames and storing the topology information into data objects such that the interconnected topology of the token ring bridged network may be ascertained in real time without increasing network traffic.
2. Description of the Related Art
A Local Area Network or “LAN” is a combination of computers and other communications devices that is dispersed over a relatively limited geographic area and connected by some form of communications link. LANs are characterized by the sharing of network resources such as printers or a shared array of hard disk drives, among several microcomputers. The individual devices on a LAN are commonly referred to as nodes which are connected by some connective media such as electrical cables over which messages are transmitted. Currently, there are several distinguishable types of LANs including: ring networks, star networks, token ring networks, and token ring bridged networks.
In general, the title “token ring network” denotes a network that utilizes a ring topology, in which information contained within transmission frames is passed in a circuit from node to node. A transmission frame, referred to interchangeably as an “information packet”, is a well understood data transmission entity that, in the context of a token ring network, is a bit pattern containing data that a node has inserted for transmission after “capturing” the token. A “token”, in this context, is a particular message or bit pattern contained within a transmission frame, that is passed along from one device to the next in a ring network. In this manner, a node that is ready to send, can capture the token and insert data for transmission. Therefore, a token ring network is characterized by a token, that governs the transmission of data from one network device to the next in what amounts to a loop. Token ring networks are further defined in the IEEE 802.5 standards which are incorporated herein in their entirety by reference thereto.
Token ring bridged networks are larger and more complex networks comprising multiple token ring LANs. Devices utilized to connect such networks are known in the art as “bridges”. Various network protocols can be utilized within bridged networks and one such protocol frequently utilized within connected token ring networks, is known as source route bridging. When source route bridging protocol is utilized, each individual token ring network is referred to as a “segment”. Token ring bridged networks that utilize source route bridging protocol are known as token ring source route bridge networks.
The development of computerized information resources, such as LANs, allows users of data-processing systems to link with other servers and networks, and thus retrieve vast amounts of electronic information heretofore unavailable in an electronic medium. Such electronic information is increasingly displacing more conventional means of information transmission, such as newspapers, magazines, and even television. As LANs continue to proliferate, and the number of personal computers (PCs) that connect to these LANs continue to grow at a rapid pace, the availability of good network management tools becomes ever more important for effective network administration. Network administrators rely heavily on tools that graphically portray a network to ease the task of network management. Network topology information is particularly useful to network administrators when performing such management tasks as diagnosing problems in the network and performing administrative tasks such as adding, removing or rearranging network devices.
The number of network tools currently utilized to map token ring network topology is rather limited. These network tools include IBM's Lan Network Manager (LNM) for OS/
2
and IBM's LNM for AIX. These tools are useful in many tasks involved in network management including determination of network topology. However, the method by which these network management tools determines the topology of a network involves generating specialized “discovery” data packets. These specialized packets are often logical link control (LLC) test frames, which must be added to already existing data packets on a shared medium such as a network cable. The problem presented in such a scheme is two-fold: First, effort in the form of computing resources must be expended to create and manage these “discovery” packets, and, second, network traffic may be substantially increased to the detriment of network communications efficiency. This two-fold problem is compounded when such tools are utilized to gather topology information for token ring bridged networks, due to the increase size and complexity of such networks. As an alternative to utilizing currently existing network management programs to determine network topology, some network administrators utilize more manual, labor intensive methods to track and manage the various forms of computer networks.
From the foregoing, it can be seen that a need exists for a method and system to gather comprehensive information relating to the topology of a token ring bridged network, such as a token ring source route bridge network, and convert the collected topology information into data objects, such that the complete interconnected topology of the network may be ascertained and displayed in real time.
SUMMARY OF THE INVENTION
It is therefore an object of the invention to provide an improved method and system for managing communications networks.
It is another object of the invention to provide a method and system for efficiently acquiring topology information associated with a communications network.
It is still another object of the invention to utilize token ring information packets such that the topology of a token ring bridged network can be discovered and displayed.
It is a further object of the invention to extract and collect token ring network topology information utilizing extant token ring routing information packets and store the topology information into data objects such that the interconnected topology of a token ring bridged network may be ascertained in real time and displayed without increasing network traffic.
The above and other objects are achieved as is now described. A method and system are disclosed for determining the topology of a communications network that utilizes routing information fields contained within transmission frames for controlling routine transmissions. First, a plurality of transmission frames associated with routine data transmissions are collected. Next, a plurality of routing information fields are extracted from the plurality of transmission frames. Thereafter, the plurality of routing information frames are analyzed and parsed, thereby yielding interconnected topology data. Finally, the interconnected topology data from the plurality of routing information fields is converted and stored into programming language data objects, such that the data objects may thereafter be utilized to display the interconnected topology of the communications network.


REFERENCES:
patent: 4507777 (1985-03-01), Tucker et al.
patent: 5084870 (1992-01-01), Hutchison et al.
patent: 5305306 (1994-04-01), Spinney et al.
patent: 5363366 (1994-11-01), Wisdom et al.
patent: 5444695 (1995-08-01), Copley et al.
patent: 5485455 (1996-01-01), Dobbins et al.
patent: 5539727 (1996-07-01), Kramarczyk et al.
patent: 5684959 (1997-11-01), B

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Token ring network topology discovery and display does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Token ring network topology discovery and display, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Token ring network topology discovery and display will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2929099

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.