Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – For cleaning a specific substrate or removing a specific...
Reexamination Certificate
2001-03-14
2004-03-30
Gupta, Yogendra N. (Department: 1751)
Cleaning compositions for solid surfaces, auxiliary compositions
Cleaning compositions or processes of preparing
For cleaning a specific substrate or removing a specific...
C422S005000, C424S076500
Reexamination Certificate
active
06713441
ABSTRACT:
TECHNICAL FIELD
The present invention is generally related to toilet bowl cleaners and, more particularly, is related to a method for preparing toilet bowl cleaners in an effervescent tablet formulation.
BACKGROUND OF THE INVENTION
All toilets found in private residences and public facilities are contaminated by various organic materials that contain or support the growth of various microorganisms. Cleaning alone is not sufficient to kill or inhibit the growth of these organisms and use of disinfectants is necessary.
A disinfectant is a substance that destroys or irreversibly inactivates infectious or other undesirable bacteria, pathogenic fungi, and viruses or surfaces on inanimate objects. Disinfectants kill the growing forms but not necessarily the resistant spore forms of microorganisms. Sterilizers, on the other hand, destroy the growing and spore forms of viruses, bacteria, and fungi on inanimate surfaces. Sanitizers are used to reduce the number of living bacteria or viable virus particles or inanimate surfaces, in water, or in air, and fungicides and fungistats are used to inhibit the growth of or destroy fungi on inanimate surfaces.
The use of disinfectant or sterilant concentrates in a powdered form has been taught in the prior art; for example, in U.S. Pat. No. 5,350,563 to Kralovic et al. The problem with the use of powders as disinfectant concentrates is that they also must be measured in order to prepare the diluted solution and must be poured from one container to another. In addition, there are sometimes problems with forcing the powder into solution.
Certain consumers have found concentrated liquid cleaners to be highly desirable. Important considerations in the selection of a cleaning composition include ease of handling, cleaning ability and stability of the product during storage.
One advantage of liquid cleaners is the ease of handling because liquids can be automatically pumped or dispensed directly to their final use application. Liquid cleaners can also be made into a highly concentrated intermediate aqueous solution that is subsequently flushed/diluted to its proper final use application solution. Liquid cleaners are generally more rapidly soluble than powder or granule cleaners with the same or comparable active ingredients. Liquid cleaners can use higher levels of some surfactants that would cause powders or granules to cake if used at similar levels.
Almost all liquid cleaners have the disadvantage that they are diluted with water, so larger volumes and weights have to be shipped, stored and used to accomplish the equivalent cleaning as a highly concentrated powder or granules. Many liquid cleaners utilize high concentrations of corrosive chemicals which easily spill or splatter on users causing chemical burns, inhalation burns, blindness or discomfort. Liquids can be corrosive to their dispensing equipment by virtue of the caustic alkali being incompatible with pump parts or delivery tubing. Additionally, the ingredients within liquids interact because the ingredient molecules are mobile. These interactions can precipitate or irreversibly inactivate some of the active ingredients upon storage.
One advantage of powder and granular cleaners is the high concentrations of active ingredients because few or no inert ingredients are required. In powder or granular cleaners, high levels of inorganic or organic salts can be used to raise alkalinity and soften water by chelating or sequestering water hardness ions. The powdered or granular cleaners can be used to provide oxidizing agents (bleaches) or reducing agents and granular enzyme materials that can be blended into free flowing powder or granular cleaners. The oxidizing or reducing agents and the enzymes are stable in the powdered or granulated cleaners with no significant loss of activity on extended storage.
A significant disadvantage of powder or granular cleaners for commercial applications is that they are not as accurately controllable in dispensing equipment as liquids. Powder or granular systems can require manually scooping a quantity of powder or granules for each use, thus not taking advantage of the ease, accuracy and hands-off labor savings of liquid dispensers. Also, powders and granules can cake if exposed to high humidity or temperatures. Once they become caked, they cannot be subsequently removed from their shipping container. Powders and granules can lose some of their activity if moistened or exposed to high humidity. Non-homogeneous powders and granules can segregate in their shipping containers, that is, separate or stratify by particle size or density resulting in a non-uniform mixture that may not be appropriate for ultimate use applications. Furthermore, powders and granules can create a safety hazard in that granules or airborne dust particles of irritating or corrosive materials can exit their container or otherwise come in direct contact with tissue, including lung tissue, causing bums or discomfort.
Other patents, for example, those of Hunt et al., U.S. Pat. No. 4,265,847, and White et al., U.S. Pat. No. 4,536,389, teach effervescent tablets useful for preparing solutions for sterilizing or disinfecting. Such compositions are rapid water soluble tablets typically comprising an active chemical compound, an alkali metal bicarbonate, e.g. sodium or potassium bicarbonate, and a solid aliphatic carboxylic acid such as citric acid, tartaric acid, adipic acid, or an acid salt thereof. In use, such tablets are dissolved in water whereupon the interaction of the bicarbonate and acid components results in the release of carbon dioxide, thus increasing the rate of solution of the other components and producing a solution in which the active (disinfecting) ingredient is homogenously dissolved. Methods for forming effervescent tablets are well known in the art. For example, see U.S. Pat. No. 4,265,847 to Hunt et al. and U.S. Pat. No. 5,114,647 to Levesque et al., which disclosures are incorporated herein in their entireties, by reference.
Halogen compounds are effective as disinfecting agents but their use as such agents is limited due to difficulties in storage, mixing, and handling of concentrated halogens and instability of dilute forms. The use of sodium dichloroisocyanurate as a disinfecting agent is known in the prior art. For example, see U.S. Pat. No. 4,536,389, to White et al., and U.S. Pat. No. 5,114,642, to Levesque et al. Sodium dichloroisocyanurate hydrolyses in water to produce hypochlorous acid (HOCl) and hypochlorite (OCl
−
), which exist in solution at an equilibrium that is dependent upon the pH of the solution.
Accordingly, there is a need for an effective disinfecting agent packaged and supplied in a convenient effervescent form. The effervescent tablet must fully and rapidly dissolve in a rapid fashion to form a homogeneous disinfecting solution that is highly active and stable for a useful length of time, as well as produce a sizeable amount of effervescent foam.
Thus, a heretofore unaddressed need exists in the industry to address the aforementioned deficiencies and inadequacies.
SUMMARY OF THE INVENTION
The present invention provides a toilet bowl cleaner composition and method for making a toilet bowl cleaner composition. Briefly described, the toilet bowl cleaner includes a hypochlorite generator and an effervescent system that produces a foam level approximately one inch above a water line in a toilet bowl. The toilet bowl cleaner of the present invention may be prepared, stored and packaged in a manner that prevents moisture from initiating premature decomposition of the cleaning components. Typically, the effervescent system used in the toilet bowl cleaner includes an alkali metal carbonate and an acid. The toilet bowl cleaner may further include any one or more of the following ingredients: a lubricant, a binder, a fragrant, and a surfactant mixture. The toilet bowl cleaner of the present invention may be prepared in tablet, granular, or powder form. If prepared in tablet or granular form, the toilet bowl cleaner may further be coated with a surfactan
Dawson Hilton G.
DeSenna Richard A.
Moore Ryan Griffin
Wiley Kenneth Scott
Chemlink Laboratories, LLC
Gupta Yogendra N.
Kayden James W.
Petruncio John M.
Thomas Kayden Horstemeyer & Risley LLP
LandOfFree
Toilet bowl cleaner does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Toilet bowl cleaner, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Toilet bowl cleaner will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3251331