TNF receptor death domain ligand proteins and inhibitors of...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007100, C435S007200

Reexamination Certificate

active

06322972

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to the field of anti-inflammatory substances and other substances which act by inhibiting binding to the intracellular domain of a tumor necrosis factor receptor (hereinafter “TNF-R”), such as, for example the P55 type (or TNF-R1) TNF receptor. More particularly, the present invention is directed to novel ligands which bind to the TNF-R intracellular domain and to inhibition or modulation of signal transduction by this receptor.
Tumor necrosis factor (herein “TNF”) is a cytokine which produces a wide range of cellular activities. TNF causes an inflammatory response, which can be beneficial, such as in mounting an immune response to a pathogen, or when overexpressed can lead to other detrimental effects of inflammation.
The cellular effects of TNF are initiated by the binding of TNF to its receptors (TNF-Rs) on the surface of target cells. The isolation of polynucleotides encoding TNF-Rs and variant forms of such receptors has been described in European patent publication Nos. EP 308,378, EP 393,438, EP 433,900, EP 526,905 and EP 568,925; in PCT patent publication Nos. WO91/03553 and WO93/19777; and by Schall et al., Cell 61:361-370 (1990) (disclosing the P55 type TNF receptor). Processes for purification of TNF-Rs have also been disclosed in U.S. Pat. No. 5,296,592.
Native TNF-Rs are characterized by distinct extracellular. transmembrane and intracellular domains. The primary purpose of the extracellular domain is to present a binding site for TNF on the outside of the cell. When TNF is bound to the binding site, a “signal” is transmitted to the inside of the cell through the transmembrane and intracellular domains, indicating that binding has occurred. Transmission or “transduction” of the signal to the inside of the cell occurs by a change in conformation of the transmembrane and/or intracellular domains of the receptor. This signal is “received” by the binding of proteins and other molecules to the intracellular domain of the receptor, resulting in the effects seen upon TNF stimulation. Two distinct TNF receptors of ~55 kd (“TNF-R1”) and ~75 kd (“TNF-R2”) have been identified. Numerous studies with anti-TNF receptor antibodies have demonstrated that TNF-R1 is the receptor which signals the majority of the pleiotropic activities of TNF. Recently, the domain required for signaling cytotoxicity and other TNF-mediated responses has been mapped to the ~80 amino acid near the C-terminus of TNF-R1. This domain is therefore termed the “death domain” (hereinafter referred to as “TNF-R death domain” and “TNF-R1-DD”) (see, Tartaglia et al., Cell 74:845-853 (1993)).
While TNF binding by TNF-Rs results in beneficial cellular effects, it is often desirable to prevent or deter TNF binding from causing other detrimental cellular effects. Although substantial effort has been expended investigating inhibition of TNF binding to the extracellular domain of TNF-Rs, examination of binding of proteins and other molecules to the intracellular domain of TNF-Rs has received much less attention.
However, ligands which bind to the TNF-R intracellular domain have yet to be identified. It would be desirable to identify and isolate such ligands to examine their effects upon TNF-R signal transduction and their use as therapeutic agents for treatment of TNF-induced conditions. Furthermore, identification of such ligands would provide a means for screening for inhibitors of TNF-R/intracellular ligand binding, which will also be useful as anti-inflammatory agents.
SUMMARY OF THE INVENTION
Applicants have for the first time identified novel TNF-R1-DD ligand proteins and have isolated polynucleotides encoding such ligands. Applicants have also identified a known protein which may also bind to the death domain of TNF-R.
In one embodiment, the present invention provides a composition comprising an isolated polynucleotide encoding a protein having TNF-R1-DD ligand protein activity. In preferred embodiments, the polynucleotide is selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:1 from nucleotide 2 to nucleotide 1231;
(b) a polynucleotide comprising a fragment of the nucleotide sequence of SEQ ID NO:1;
(c) a polynucleotide encoding an TNF-R1-DD ligand protein comprising the amino acid sequence of SEQ ID NO:2;
(d) a polynucleotide encoding an TNF-R1-DD ligand protein comprising a fragment of the amino acid sequence of SEQ ID NO:2;
(e) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:3 from nucleotide 2 to nucleotide 415;
(f) a polynucleotide comprising a fragment of the nucleotide sequence of SEQ ID NO:3;
(g) a polynucleotide encoding an TNF-R1-DD ligand protein comprising the amino acid sequence of SEQ ID NO:4;
(h) a polynucleotide encoding an TNF-R1-DD ligand protein comprising a fragment of the amino acid sequence of SEQ ID NO:4;
(i) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:9 from nucleotide 2 to nucleotide 931;
(j) a polynucleotide comprising a fragment of the nucleotide sequence of SEQ ID NO:9;
(k) a polynucleotide encoding an TNF-R1-DD ligand protein comprising the amino acid sequence of SEQ ID NO:10;
(l) a polynucleotide encoding an TNF-R1-DD ligand protein comprising a fragment of the amino acid sequence of SEQ ID NO:10;
(m) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:11 from nucleotide 2 to nucleotide 1822;
(n) a polynucleotide comprising a fragment of the nucleotide sequence of SEQ ID NO:11;
(o) a polynucleotide encoding an TNF-R1-DD ligand protein comprising the amino acid sequence of SEQ ID NO:12;
(p) a polynucleotide encoding an TNF-R1-DD ligand protein comprising a fragment of the amino acid sequence of SEQ ID NO:12;
(q) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:13 from nucleotide 3 to nucleotide 2846;
(r) a polynucleotide comprising a fragment of the nucleotide sequence of SEQ ID NO:13, which encodes a protein having TNF-R1-DD ligand protein activity;
(s) a polynucleotide encoding an TNF-R1-DD ligand protein comprising the amino acid sequence of SEQ ID NO:14;
(t) a polynucleotide encoding an TNF-R1-DD ligand protein comprising a fragment of the amino acid sequence of SEQ ID NO:14 and having TNF-R1-DD ligand protein activity;
(u) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:15 from nucleotide 326 to nucleotide 5092;
(v) a polynucleotide comprising a fragment of the nucleotide sequence of SEQ ID NO:15;
(w) a polynucleotide encoding an TNF-R1-DD ligand protein comprising the amino acid sequence of SEQ ID NO:16;
(x) a polynucleotide encoding an TNF-R1-DD ligand protein comprising a fragment of the amino acid sequence of SEQ ID NO:16;
(y) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:17 from nucleotide 14 to nucleotide 2404;
(z) a polynucleotide comprising a fragment of the nucleotide sequence of SEQ ID NO:17;
(aa) a polynucleotide encoding an TNF-R1-DD ligand protein comprising the amino acid sequence of SEQ ID NO:18;
(bb) a polynucleotide encoding an TNF-R1-DD ligand protein comprising a fragment of the amino acid sequence of SEQ ID NO:18; and
(cc) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(cc).
In certain preferred embodiments, the polynucleotide is operably linked to an expression control sequence. The invention also provides a host cell, including bacterial, yeast, insect and mammalian cells, transformed with such polynucleotide compositions:
Processes are also provided for producing an TNF-R1-DD ligand protein, which comprises:
(a) growing a culture of the host cell transformed with such polynucleotide compositions in a suitable culture medium; and
(b) purifying the TNF-R1-DD ligand protein from the culture. The ligand protein produced according to such methods is also provided by the present invention.
Compositions comprising a protein having TNF-R1-DD ligand protein activity are also disclosed. In preferred embodiments the protein comprises an amino acid sequence selected from the group

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

TNF receptor death domain ligand proteins and inhibitors of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with TNF receptor death domain ligand proteins and inhibitors of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and TNF receptor death domain ligand proteins and inhibitors of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2597874

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.