Drug – bio-affecting and body treating compositions – Immunoglobulin – antiserum – antibody – or antibody fragment,... – Structurally-modified antibody – immunoglobulin – or fragment...
Reexamination Certificate
2000-09-19
2002-08-06
Jarvis, William R. A. (Department: 1614)
Drug, bio-affecting and body treating compositions
Immunoglobulin, antiserum, antibody, or antibody fragment,...
Structurally-modified antibody, immunoglobulin, or fragment...
Reexamination Certificate
active
06428787
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to tumor necrosis factor (TNF) antagonists or TNF blockers for the treatment of neurological disorders, trauma, injuries or compression; demyelinating neurological disorders, including multiple sclerosis; neurodegenerative diseases, including Alzheimer's disease; muscular disorders; and disorders of the optic nerve and retina (hereinafter “Neurologic and Related TNF Disorders”). More particularly, the TNF antagonists, TNF inhibitors or TNF blockers, are used for the treatment, prevention or amelioration of these “Neurologic and Related TNF Disorders” by modulating the action of TNF in the human body. The use of these TNF antagonists or TNF blockers results in the amelioration of these disorders and diseases and represents a novel use for this class of drugs.
BACKGROUND OF THE INVENTION
Neurological disorders due to demyelinating disease (e.g. multiple sclerosis), immune disease, inflammation, trauma, or compression, occur in different clinical forms depending upon the anatomic site and the cause and natural history of the physiological problem. For example, in Alzheimer's disease the brain undergoes a serious form of neurodegeneration of unknown etiology. Common to all of these disorders is the fact that they can cause permanent neurological damage, that damage can occur rapidly and be irreversible, and that current treatment of these conditions is unsatisfactory, often requiring surgery and/or the use of pharmacologic agents, which are often not completely successful.
These neurological conditions include acute spinal cord trauma, spinal cord compression, spinal cord hematoma, cord contusion (these cases are usually traumatic, such as motorcycle accidents or sports injuries); nerve compression, the most common condition being a herniated disc causing sciatic nerve compression, neuropathy, and pain; but also including cervical disc herniation, causing nerve compression in the neck; acute or chronic spinal cord compression from cancer (this is usually due to metastases to the spine, such as from prostate, breast or lung cancer); autoimmune disease of the nervous system; and demyelinating diseases, the most common condition being multiple sclerosis.
Steroid drugs such as cortisone that are used to treat many of the aforementioned neurological problems and conditions are particularly hazardous because they are used either at high dosage, with a corresponding increasing risk of side effects, or because they are used chronically, also increasing their adverse effects. Lastly, steroids are only partially effective or completely ineffective.
Tumor necrosis factor (TNF), a naturally occurring cytokine, plays a central role in the inflammatory response and in immune injury. TNF is formed by the cleavage of a precursor transmembrane protein, forming soluble molecules which aggregate to form trimolecular complexes. These complexes then bind to receptors found on a variety of cells. Binding produces an array of pro-inflammatory effects, including release of other pro-inflammatory cytokines, including interleukin (IL)-6, IL-8, and IL-1; release of matrix metalloproteinases; and up regulation of the expression of endothelial adhesion molecules, further amplifying the inflammatory and immune cascade by attracting leukocytes into extravascular tissues. TNF is now well established as key in the pathogenesis of rheumatoid arthritis (RA) and Crohn's Disease.
Specific inhibitors of TNF, only recently commercially available, now provide the possibility of therapeutic intervention in TNF mediated diseases. Dramatic therapeutic success has already been demonstrated with infliximab, a chimeric anti-TNF monoclonal antibody (mAb), in treating Crohn's Disease and RA; and with etanercept, a recombinant fusion protein consisting of two soluble TNF receptors joined by the Fc fragment of a human IgG1 molecule, in treating RA and Psoriatic Arthritis. Other specific anti-TNF agents are under development, including D2E7 (a human anti-TNF mAb), CDP 571 (a chimeric, but 95% humanized, anti-TNF mAb), and a pegylated soluble TNF type 1 receptor. Additionally, thalidomide has been demonstrated to be a potent anti-TNF agent. Further, anti-TNF therapies may include gene therapy and the development of selective inhibitors of the TNF-alpha converting enzyme.
As with other organ systems, TNF has been shown to have a key role in the central nervous system. There is a need for TNF inhibitors that will open a new realm of therapeutic possibilities for a wide variety of neurological and related disorders. These disorders are diverse and include inflammatory and autoimmune disorders of the nervous system, including multiple sclerosis, Guillain Barre syndrome, and myasthenia gravis; degenerative disorders of the nervous system, including Alzheimer's disease, Parkinson's disease and Huntington's disease; disorders of related systems of the retina and of muscle, including optic neuritis, macular degeneration, diabetic retinopathy, dermatomyositis, amyotrophic lateral sclerosis, and muscular dystrophy; and injuries to the nervous system, including traumatic brain injury, acute spinal cord injury, and stroke.
The limited ability of the body to effect repair after injury to the nervous system, the devastating nature of these diseases and the lack of effective therapy all highlight the importance of early therapy aimed at preventing or limiting neuronal destruction. Anti-TNF therapies are ideally suited to this task because they have been demonstrated to dramatically limit inflammation by interrupting the inflammatory cascade at a fundamental level.
There remains a need for a new pharmacologic treatment of these aforementioned physiological problems of the nervous system associated with autoimmune disease, demyelinating diseases, neurodegenerative diseases, trauma, injuries and compression with the pharmacological use of TNF antagonists or TNF blockers, which are greatly beneficial for the large number of patients whom these conditions affect. Drugs which are powerful TNF blockers are etanercept, infliximab, pegylated soluble TNF Receptor Type I (PEGs TNF-R1), other agents containing soluble TNF receptors, CDP571 (a humanized monoclonal anti-TNF-alpha antibodies), thalidomide, phosphodiesterase 4 (IV) inhibitor thalidomide analogues and other phosphodiesterase IV inhibitors. Etanercept or infliximab may be used for the immediate, short term and long term (acute and chronic) blockade of TNF in order to minimize neurological damage mediated by TNF dependent processes occurring in the aforementioned neurological disorders. The use of these TNF antagonists or TNF blockers would result in the amelioration of these physiological neurological problems.
Additionally, several of these TNF agents will not cross the blood-brain barrier. Accordingly, there is also a need for these TNF agents to be introduced directly into the cerebrospinal fluid to be effective. This can be accomplished either at the level of the spinal cord, or by introduction into the ventricular system of the brain, usually via an indwelling, subcutaneous reservoir which is connected by catheter into the ventricular system. This will allow the chronic use of these agents for the treatment of neurological disorders which require chronic TNF modulation.
DESCRIPTION OF THE PRIOR ART
Pharmacologic chemical substances, compounds and agents which are used for the treatment of neurological disorders, trauma, injuries and compression having various organic structures and metabolic functions have been disclosed in the prior art. For example, U.S. Pat. Nos. 5,756,482 and 5,574,022 to ROBERTS et al disclose methods of attenuating physical damage to the nervous system and to the spinal cord after injury using steroid hormones or steroid precursors such as pregnenolone, and pregnenolone sulfate in conjunction with a non-steroidal anti-inflammatory substance such as indomethacin. These prior art patents do not teach the use of a TNF antagonist or TNF blocker for the suppression and inhibition of the
Jarvis William R. A.
Sutton Ezra
LandOfFree
TNF inhibitors for the treatment of retinal disorders does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with TNF inhibitors for the treatment of retinal disorders, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and TNF inhibitors for the treatment of retinal disorders will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2969756