Elongated-member-driving apparatus – Surgical stapler
Reexamination Certificate
2000-02-22
2003-03-18
Rada, Rinaldi I. (Department: 3721)
Elongated-member-driving apparatus
Surgical stapler
C227S019000, C227S083000, C227S088000, C227S089000, C227S176100, C227S177100
Reexamination Certificate
active
06533157
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to attachments for electromechanical driver devices, and more specifically to an attachment for an electromechanical driver device which may be used to staple tissue.
2. Description of the Prior Art
Upon identification of a region of herniated musculature in the abdominal wall, surgical intervention is almost always required. The procedure is straightforward in concept, but includes a number of technically sophisticated features, especially insofar as it is usually carried out remotely, i.e., through small portals formed in the patient's lower trunk. More particularly, the technique most often utilized involves forming two or three small puncture holes in the lower abdomen of the patient, inserting a corresponding cylindrical tube through each of the holes, passing elongate instruments through the tubes, retracting the soft tissues away from the site of the hernia, and stapling the torn tissue closed. This final closure step often further includes the use of a synthetic mesh, which is placed over the hole for the purpose of supporting the soft tissues and organs disposed above the healing hole. The mesh is stapled directly to the musculature, in the vicinity of the defect. The present invention is directed to the instrumentation which is the stapling component.
Traditional stapling mechanisms function in a simple manner. The staple is initially disposed in a U-shape. The staple driver component contacts the bottom portion of the staple and advances the two upwardly extending prongs of the staple through the items which are to be joined, and toward a stationary anvil portion. Often the items to be coupled require the anvil portion to be disposed behind them to provide adequate support so that the staple prongs may push through. Once the prongs of the staple have advanced through the items to be joined, the prongs contact the anvil. The anvil often comprises staple bending guide grooves formed therein for guiding the plastic deformation of the staples as they advance under the motivation of the staple driver. This plastic deformation bends (or folds) the staples toward one another in order to form the traditional box-shape from the original U-shape. The box-shaped staple is then pulled away from the stapling mechanism by virtue of its being coupled to the items it has joined.
Stapler devices utilized in laparoscopic and endoscopic surgery are significantly different than traditional stapling mechanisms in design and function. Unlike the traditional stapling mechanisms, a spatially distinct and opposing anvil portion is not practical and is therefore not used. Instead, the surgical stapler devices comprise an integrated staple driver and anvil component which holds and advances the staple into and through the tissue to be joined. More particularly, as shown in
FIG. 1
, the internal surgical tissue stapler devices of the prior art comprise an elongate tube
10
which is designed to slip through the portal tube of the minimally invasive entry hole. The tip
12
of the tube
10
includes a plurality of individual staples which are sequentially engaged by the staple driver. Each staple is initially disposed in a U-shape. The U-shape can be more specifically described by identifying the different regions thereof. The flat bottom portion of the staple has a central portion, and lateral portions. Upwardly extending prongs, which are disposed at the extreme lateral ends of the flat bottom portion, are each approximately equivalent in length, and are approximately equal to one third of the length of the flat bottom portion. The staple driver initially pushes the staple forward by pressing against the bottom portion of the staple at the central portion thereof. The staple is advanced forward until the prongs have extended beyond the tip of the housing, and have penetrated the tissue to be joined. Further advancement of the staple is prevented by an anvil portion which is fixed in the tip of the mechanism. The anvil, unlike the anvil of traditional stapling mechanisms, only contacts the central portion of the bottom portion of the staple, opposite the staple driver. Stated equivalently, once the staple has been advanced fully within the tip of the device, the anvil in the tip prevents the staple from moving forward as it becomes constrained between the staple driver on the back side and the anvil on the front.
At this time, a second mechanism is engaged in order to close the staple. This closing mechanism comprises a pair of straight tines which advance forward from within the tip, and contact the staple at the lateral portions of the bottom flat portion. The continued advancement of the prong bending tines causes the staple to deform as the prongs of the staple are forcibly turned toward one another. However, the actual site of the bending is not along the prongs. It is at the junction of the lateral and central portions of the flat bottom portion. This causes the fully deformed staple in this surgical stapler device to attain a D-shape as opposed to the B-shape which fully deformed staples of traditional stapling mechanisms attain. Release of the staple, once it has been coupled to the joined tissue, is achieved by first retracting the tines which bent the staple, and then twisting the shaft of the device to pull the staple off the anvil.
An additional feature of the surgical stapler devices of the prior art which should be appreciated in light of the present invention is the means by which all of the advancing elements, i.e., the staple driver and the prong bending tines, are motivated. In the minimally invasive surgical stapler devices of the prior art, the elongate tubular portion terminates in a handle which includes a trigger. The trigger has a dual function in that the compression of the trigger initially advances the staple driver without moving the prong bending tines. Once the staple has been fully advanced and is ready for bending, the tines are advanced through the tip to contact the staple, by continued compression of the grip-styled trigger.
It shall be easily recognizable that the requirement of manual triggering, as well as the two-step mechanism for advancing and then forming the staple, are both fraught with potential failures. In addition, the need to twist the shaft of the device to pull the staple off the anvil once the staple has joined the tissue presents a significant risk of tearing tissue as this action stresses both the staple and the tissue.
In addition, another drawback is that the mechanism for discharging the staples is a trigger coupled to a rigid elongate shaft which translates forward and backward in correspondence with the compression and release of the trigger. The rigidity of the shaft requires the surgeon to manipulate the entire device in order to align the stapler properly. Inasmuch as hernias of the abdominal cavity often occur on the floor of the abdomen, this manipulation is often quite difficult.
Finally, with regard to the use of the surgical stapler devices of the prior art, the devices are constructed to be completely disposable. The inability to re-use the devices increases the cost of using the devices. More specifically, this feature does not diminish the overall cost of manufacturing because of the obvious medical use requirements, but does increase the cost per procedure as a new device must be used for each surgery. In fact, if more staples are required for the surgery than are provided for in the device, an entirely new device must be used because there is no possibility of simply replacing the empty staple cartridge.
It is therefore a principal object of the present invention to provide a surgical stapler device which may be easily manipulated into the proper position without having to grossly deform the soft tissues through which the elongate shaft of the device passes.
It is also an object of the present invention to provide a surgical stapler device which has a single-step staple discharging mechanism.
It is a related object of the p
Kenyon & Kenyon
Power Medical Interventions, Inc.
Rada Rinaldi I.
Tran Louis
LandOfFree
Tissue stapling attachment for use with an electromechanical... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Tissue stapling attachment for use with an electromechanical..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tissue stapling attachment for use with an electromechanical... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3035192