Chemical apparatus and process disinfecting – deodorizing – preser – Analyzer – structured indicator – or manipulative laboratory... – Means for analyzing gas sample
Reexamination Certificate
2001-01-16
2004-08-24
Ludlow, Jan M. (Department: 1743)
Chemical apparatus and process disinfecting, deodorizing, preser
Analyzer, structured indicator, or manipulative laboratory...
Means for analyzing gas sample
C118S429000, C118S688000, C427S002110, C436S176000
Reexamination Certificate
active
06780380
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to an improved automatic tissue processor for processing tissue samples for histological analysis.
2. Description of the Related Art
U.S. Pat. No. 6,058,788 describes a tissue processor apparatus featuring a plurality of containers arranged one beside the other and a complex mechanical mechanism for moving tissue samples from one container to the next. Object holders fastened on lifting means are positioned over the containers. The lifting means include a turntable and a rotatably mounted guide rod translated by drive means in a direction perpendicular to the direction of rotation of the turntable. This tissue processor device is complex in character and costly to operate and maintain.
U.S. Pat. No. 4,834,943 describes a tissue processor apparatus for preparing resin-impregnated specimens for microscopic examination. This apparatus comprises a stack of embedding boxes, each containing a specimen, to which specimen preparation reagents are fed by a delivery pump. The specimen preparation reagents fed to the stack are shaken by a reagent shaker mechanism.
U.S. Pat. No. 4,688,517 describes a tissue processor apparatus including a rotatable table, which carries either the samples or solutions in which the samples are to be immersed. The apparatus comprises complex mechanical mechanisms for rotating the table and causing the table to move up and down. This tissue processor device is mechanically cumbersome and costly to manufacture and maintain.
U.S. Pat. No. 3,889,014 describes a tissue processor programmed for fixation, dehydration and clearing of tissue specimens, utilizing a porous receptacle for each specimen and a processing chamber adapted to contain a plurality of the receptacles. The chamber is connected to a plurality of containers, some of which are refrigerated, and which contain various processing solutions. The solutions are individually piped to the chamber through a remotely controlled valve and manifold associated with a metering pump. This arrangement is reported to minimize fluid contamination and allow each solution to be precisely metered, brought to, retained in and drained from the chamber, to enable specimens to be contacted with reagent solutions according to an automatic programmed time sequence. The program may be varied as to number of cycles per solution, as to the number of solutions per program, as to time per cycle and as to starting and terminal solutions in the program. This tissue processor suffers from clogging and associated problems attributable to inconsistent heating of wax containers and deficiencies in the complex apparatus used to transfer heated wax to the processing chamber.
Other examples of tissue processor technology are described in U.S. Pat. Nos. 3,526,203; 3,771,490; 3,227,130; 2,959,151; 2,386,079; 2,341,198; 2,157,875; 2,959,151; 3,400,726; 2,681,298; and 2,684,925.
Against the background of the above-described state of the art, there is a need in the art for an improved tissue processor that is economical to manufacture, operate and maintain, and is highly efficient in operation, employing precision control hardware and software for the execution of tissue processing protocols, without the need for operator intervention during the execution of such protocols.
There is also a need in the art for a tissue processor with an improved heating system for reducing energy consumption and enhancing heating uniformity throughout the system.
There is additionally a need in the art for a tissue processor utilizing a reagent management program for reducing reagent consumption and improving tissue quality.
There is further a need in the art for a tissue processor with an improved fluid transporting system for effective prevention of clogging, reagent carry-over, and other associated problems characteristic of current tissue processor systems.
SUMMARY OF THE INVENTION
The present invention in a broad aspect relates to a tissue processor, comprising:
(a) a retort chamber for processing tissue;
(b) a wax storage chamber comprising one or more wax containers;
(c) a reagent storage chamber comprising one or more reagent containers;
(d) a fluid transporting system communicatively connected with the retort chamber, said fluid transporting system comprising a selector for selectively connecting the retort chamber with any one of the wax containers or the reagent containers; and
(e) multiple heating elements for heating the retort chamber, the wax storage chamber, and all or any parts of the fluid transporting system;
(f) a pumping system communicatively connected with the retort chamber for pneumatically driving fluid into or out of the retort chamber via said fluid transporting system; and
(g) a computerized central control system for automatic monitoring and managing components (a)-(f).
In a specific embodiment of the present invention, the wax containers and reagent containers are interchangeable plastic bottles that are configured to be installed in slots in their respective storage chambers. Each container may comprise a quick-connect device for establishing fluid communication from such container to the selector of the fluid transporting system, so that such container can be selectively connected to the retort chamber.
In another embodiment of the present invention, the selector of the fluid transporting system comprises a rotary valve controlled by a Maltese Cross gear. Such Maltese Cross gear only allows the rotary valve to rest at a set of predetermined positions. Each of these predetermined positions aligns the rotary valve to form a fluid communication path that connects a particular wax or reagent container with the retort chamber, so that wax or reagent will be supplied to the retort chamber from the particular container.
The position of the rotary valve can be readily monitored by a position sensor mounted on the body of the rotary valve. Moreover, such position sensor can be operative coupled to the computerized central control system for outputting information about position of the rotary valve. An operator can also input command through the central control system to instruct the selector to rotate the rotary valve to a desired position, thereby supplying fluid from a particular container to the retort chamber.
In a further embodiment of the present invention, the wax storage chamber and the fluid transporting system are positioned in a unitary housing so that they can be co-heated by a common set of heating elements. Alternatively, the fluid transporting system can be indirectly heated by heating elements mounted on the wax storage chamber, which is particularly advantageous for preventing overheating of the fluid transporting system and for reducing overall energy consumption.
In order to prevent wax from clogging, the retort chamber, the wax storage chamber, and/or the fluid transporting system are heated to a temperature sufficient for maintaining wax contained therein in a liquid state, with the temperature being controlled to avoid burning the wax.
In order to achieve effective heating and thermal control of the wax storage chamber, a multiplicity, e.g., five to fifteen, of heating elements are preferably mounted in and around the wax storage chamber. These heating elements can be generally divided into three groups: (a) internal heaters placed between each two wax containers inside the wax storage chamber, preferably in a separator used to separate wax containers from each other; (b) external heaters on each side wall as well as the floor of the wax storage chamber; (c) supplemental heaters on each side wall of the wax storage chamber, provided that such side wall is proximate to the fluid transporting system, for promoting co-heating or indirect heating of the fluid transporting system.
In a further aspect of the present invention, the computerized central control system comprises means for monitoring and controlling pressure and/or temperature within the retort chamber. Such means may include, but is not limited to, thermostats, thermocouples, temper
Cometto Sergio
Hunnell Jack E.
Fuierer Marianne
Fuierer Tristan A.
Hultquist Steven J.
Ludlow Jan M.
Triangle Biomedical Sciences, Inc.
LandOfFree
Tissue processor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Tissue processor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tissue processor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3316604