Tissue factor antagonists and methods of use thereof

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Heterocyclic carbon compounds containing a hetero ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S183000, C514S255040, C514S258100, C514S313000, C514S373000, C514S888000, C514S596000, C544S358000, C544S396000, C544S398000, C546S101000, C546S103000, C546S108000, C546S152000, C546S159000, C546S177000, C548S217000, C548S237000

Reexamination Certificate

active

06608066

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to pharmaceutically active compounds and pharmaceutical compositions and therapeutic methods that comprise such compounds. Preferred compounds of the invention are useful for the treatment or prophylaxis of undesired thrombosis. The invention has a wide spectrum of applications including use in screening candidate compounds for the treatment or prophylaxis of thrombosis.
2. Background
Blood clotting assists hemostasis by minimizing blood loss. Generally, blood clotting is initiated by vessel damage and requires platelet aggregation, coagulation factors and inhibition of fibrinolysis. The coagulation factors act through a cascade that relates the vessel damage to formation of a blood clot (see generally L. Stryer,
Biochemistry
, 3rd Ed, W. H. Freeman Co., New York; and A. G. Gilman et al.,
The Pharmacological Basis of Therapeutics
, 8th Edition, McGraw Hill Inc., New York, pp. 1311-1331).
Tissue factor (TF), an integral membrane protein of 263 amino acids, is responsible for initiating the coagulation protease cascade. Vascular damage exposes blood to tissue factor expressed on subendothelial cell surfaces, leading to the formation of a calcium-dependent, high-affinity complex with the plasma factor VII (FVII) or activated factor VII (FVIIa). Binding to TF promotes rapid proteolytic cleavage of the zymogen FVII to the active serine protease FVIIa by a number of proteases such as factor Xa, or thrombin. TF also functions as an essential cofactor for FVIIa by dramatically enhancing the catalytic efficiency of FVIIa for its protein substrates factors IX and X. TF/VIIa complex activates factors IX (FIX) and X (FX) via limited proteolysis, ultimately leading to thrombin generation and fibrin deposition. Under pathological conditions such as atherosclerosis or following invasive surgical procedures such as microvascular graft, angioplasty, deployment of an implanted device (e.g., a stent, catheter or arteriovenous shunt), or endarterectomy, TF-initiated coagulation can lead to thrombotic disorders that can result e.g. in heart attack, stroke, unstable angina, graft failure or other coronary disorder.
Thrombosis also may accompany various thromboembolic disorders and coagulopathies such as a pulmonary embolism (e.g., atrial fibrillation with embolization, deep vein thrombosis, etc.) and disseminated intravascular coagulation, respectively. Manipulation of body fluids can also result in an undesirable thrombus, particularly in blood transfusions or fluid sampling, as well as procedures involving extracorporeal circulation (e.g., cardiopulmonary bypass surgery) and dialysis.
Certain anti-coagulants have been used to alleviate or avoid blood clots associated with thrombosis. Blood clotting often can be minimized or eliminated by administering a suitable anti-coagulant or mixture thereof, including one or more of a coumarin derivative (e.g., warfin and dicumarol) or a charged polymer (e.g., heparin, hirudin or hirulog). See e.g., Gilman et al., supra, R. J. Beigering et al.,
Ann. Hemathol
., 72:177 (1996); J. D. Willerson,
Circulation
, 94:866 (1996).
Certain antibodies with anti-platelet activity have also been used to alleviate various thromboses. For example, ReoPro™ is a therapeutic antibody that is routinely administered to alleviate various thromboembolic disorders such as those arising from angioplasty, myocardial infarction, unstable angina and coronary artery stenoses. Additionally, ReoPro™ can be used as a prophylactic to reduce the risk of myocardial infarction and angina (J. T. Willerson,
Circulation
, 94:866 (1996); M. L. Simmons et al.,
Circulation
, 89:596 (1994)).
However, use of prior anti-coagulants is often associated with side effects such as hemorrhaging, re-occlusion, “white-clot” syndrome, irritation, birth defects, thrombocytopenia and hepatic dysfunction. Long-term administration of anti-coagulants can particularly increase risk of life-threatening illness (see e.g., Gilman et al., supra).
Protein-based agents are potentially safer, but generally are limited to treatment of acute conditions and often are restricted to parenteral administration. Such agents are considered less suitable for long-term therapies for chronic diseases (such as atherosclerosis, a major cause of heart attack) due to the increased probability of immune response to a protein therapeutic, relatively high production cost and/or limited oral bioavailability.
It would thus be desirable to have new anti-coagulant agents. It would be particularly desirable to have new anti-coagulant agents that could be administered over a relatively long period to treat chronic conditions such as atherosclerosis.
SUMMARY OF THE INVENTION
We have now discovered pharmaceutically active compounds and particularly tissue factor (TF) antagonists that have a wide spectrum of uses including use in the treatment and/or prevention of undesired thrombosis. Preferred compounds of the invention specifically block human factor X and IX activation catalyzed by a human tissue factor/factor VIIa complex. Also discovered are methods for treating or preventing thrombosis that use the compounds and compositions disclosed herein.
More particular methods of this invention include administering a therapeutically effective amount of at least one compound or composition of this invention. The compound or composition is typically given to a mammal in need of such treatment such as a human patient who is susceptible to, suffering from, or recovering from undesired thrombosis, or mammal that is suffering from, recovering from or susceptible to other disease or disorder impacted by tissue factor such as cardiovascular disease, cell proliferation disorder, post-operative complication, or an immune disorder. Preferred compounds and compositions may also be used to treat or prevent recognized disorders impacted by various thromboses such as those particular disorders disclosed herein.
The invention also includes methods for blocking or inhibiting tissue factor-dependent activation of factor X and/or factor IX. These methods in general include contacting tissue factor with a TF blocking compound to thereby inhibit formation of a functional complex of factor X or factor IX with tissue factor or TF/VIIA. Preferably the TF blocking compound binds to tissue factor to thereby inhibit formation of the functional complex. Inhibition or prevention of formation of such a complex in accordance with the invention can have quite broad application, including for treatment of the above-mentioned diseases or disorders in mammals, particularly humans suffering from or susceptible to such diseases or disorders.
Preferred compounds of the invention generally exhibit good blocking activity in at least one test for detecting and preferably measuring TF-mediated blood clotting. More particular tests are standard in vitro assays for measuring activity of a specific blood coagulation factor in which the assay is recognized as providing optimal results in the presence of TF or a TF-associated complex such as the human TF/VIIa complex. The TF can be provided in the assay as a recombinant molecule or molecule purified from natural sources depending usually on the specific assay selected.
A more particular in vitro assay detects and measures activity of a specific blood coagulation factor which has a recognized activity enhanced in the presence of human TF or the human TF/VIIa complex. Of preferred interest are standard in vitro assays for measuring TF-dependent activation of factor X to FXa and factor IX to FIXa. Sometimes these assays will be referred to herein as a “primary screening assay” or related term or phrase such as “method of discovery” to denote preferred use of the assay in screening compounds.
For example a particularly preferred compound of the invention will exhibit good blocking activity in the primary screening assay for measuring TF-dependent activation of factor X to FXa. Additionally preferred compounds will exhibit good blocking activity in the primary scree

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Tissue factor antagonists and methods of use thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Tissue factor antagonists and methods of use thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tissue factor antagonists and methods of use thereof will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3117913

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.